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ABSTRACT
In this paper, we devise novel techniques for saving energy in
5G wireless systems. By means of anticipated transmission
rates we find user-cell assignments and scheduling policies
that help to identify energy-efficient network topologies.
In particular, the objective of this paper is to find a user-
cell association and rate allocation over time that provides
the requested Quality of Service (QoS) to all users while
attempting to reduce the energy consumption by identify-
ing the set of active cells consuming the least amount of
energy. The used energy consumption model specifically in-
cludes the static energy consumption and the dynamic, load-
dependent energy consumption of cells. We formalize this
problem as a non-convex optimization problem that accounts
for the requirements of buffered delay-sensitive applications.
We apply relaxation techniques to find feasible anticipated
schedules for rate allocation and user-cell assignments with
a low complexity algorithm which is amenable to online
implementation. We characterize achievable energy savings
by means of simulations in a realistic network scenario under
realistic traffic patterns.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), billions
of new devices will be connected wirelessly to the mobile
communication system of the fifth generation (5G). A wide
spectrum of use cases entails that 5G will need to support
extreme objectives for delay, capacity and energy, which in
turn requires a high network adaptability to varying user re-
quirements. Todays networks are operated in a static manner
with more or less fixed network configurations providing the
maximum quality of service (QoS) at all times. Eventhough
such a mode of operation might satisfy delay and capacity
requirements, it will inevitably lead to unacceptable high
energy consumption. Therefore, it is of utmost importance
to develop new mechanisms to support energy savings in
both peak hours as well as in off-peak hours.

Most existing energy saving techniques, such as cell
deactivation or sleep mode, are designed for stationary users
and static user demands. These techniques usually have
bad performance in bursty traffic situations. The achievable
energy savings are nullified by short time increases of
traffic demand in certain areas. Proactive resource allocation
and user assignment (PRAUA) is a promising approach to
enable 5G to stand up to its high promises by improving

Fig. 1. Toy-example of a buffered delay-sensitive application
schedule.

service quality and reducing energy consumption at the same
time. In particular, PRAUA helps ’smear’ the traffic require-
ments in time and space allowing for maintaining energy-
efficient network configurations over a longer period of
time. Thereby, PRAUA exploits the knowledge about users’
mobility which can be obtained from side information or
estimated with sufficient accuracy due to the high regularity
in human mobility [1]. This information along with learned
path loss maps [2] can be used to proactively build user-cell
assignment and resource allocation schedules that greatly
support energy savings in cellular communication systems
during off-peak hours. In particular, we develop algorithms
that schedule data transmissions for new service applications
when it is favorable for energy savings. The developed
mechanisms target new service types enabled by the storage
capabilities at user devices. In particular we address buffered
delay-sensitive applications that include services like stored
content streaming (music/video). Such applications require
a constant instantaneous data rate where data can be pulled
either directly from the access network or from a pre-filled
buffer (depicted in Fig. 1). These new service types allow
base stations to delay or bring forward the transfer of data
to users which is the fundamental concept we exploit for
energy savings. Proactive scheduling has been considered
in [3] to improve the QoS of users traveling through the
service area of several cells. The presented framework plans
the resource allocation over a certain time horizon for



fixed user-cell assignments to maximize the throughput of
users. The authors of [4] propose a predictive framework
for video streaming applications to increase the energy-
efficiency in wireless networks. The problem is formulated
as a mixed integer linear program (MILP) where decisions
on multiuser rate allocation, video segment quality, and base
station transmit power are jointly optimized. A heuristic
multi stage algorithm is used to derive solutions for the
MILP problem by first allocating rates to users and then
determining the segment quality and active base station set.
The reasoning is based on the observation that efficient rate-
allocation schemes provide power savings. Other analytical
justifications for the perfomance are not given. The work in
[5] is most closely related to ours. By proactive resource
allocation and video quality decisions the authors reduce
the energy consumption of the whole network by solving
a mixed integer non-linear problem (MINLP). An algorithm
is proposed that decomposes the association and resource
allocation problem in a master problem and several sub-
problems to make the problem tractable. Thereby, the authors
leverage energy costs and video quality taking into account
backhaul costs. The resulting integer programs are solved
directly by mathematical solvers and the authors argue to
achieve decent scalability. However, this is achieved by
assuming the allocation of an equal number of resource
blocks to all users in the master problem.

In contrast to the above work, we explicitly incorporate
the user-cell assignment in the optimization framework and
target energy savings with a guaranteed QoS level instead of
maximizing the QoS. Furthermore, we use mathematically
justified relaxation techniques instead of heuristics to derive
solutions ensuring good scalability. In more detail, we ex-
ploit the possibility to preload and store data on user devices
which will serve as an enabling concept to save energy in
the communication system by disengaging certain cells1.
By delaying the service provision of some users we may
avoid to activate cells that are only needed when the traffic
demand is of bursty nature. The result is a resource usage
that lets users buffer data in high capacity cells whereas it
avoids access to cells that are overloaded or switched off
for reasons of energy savings. We use the predicted routes
of users and the learned path loss coverage maps to find
such a user-cell association and rate allocation policy under
the exploitation of the users’ buffers, i.e., when a user is
predicted to pass an area without coverage it will be allocated
more resources right before, so that the data can be loaded
in the buffer (bridging the coverage hole). To increase the
degrees of freedom for the PRAUA by multi-connectivity to
multiple cells and to exploit the mutual information received
from them we propose to use fountain codes [6]. In the
concept of fountain coding a potential infinitely long stream
of encoded symbols is generated from a finite set of data
symbols. Decoding is possible as soon as a particular amount
of code symbols is received error free with no requirement

1Notice, that we are considering only capacity cells for deactivation.
Basic coverage for other users and services has to be securedat all times.
We therefore assume basic coverage by some legacy network.

for a consecutive order. The multi-connectivity helps to find
better solutions for the problem at hand and increases the
robustness of our solution.

In the following we summarize the main contribution of
our work:

• We propose an optimization framework that exploits the
knowledge of user-cell trajectories and learned path-loss
maps. It finds user-cell association and rate schedules
that provide the requested QoS of users and reduces the
energy consumption of future cellular communication
networks.

• Our model for energy consumption is general enough to
capture static energy consumption (cooling, basic power
conversion etc.) as well as dynamic load-dependent
energy consumption.

• We exploit the end user devices’ storage capabili-
ties to serve buffered delay-sensitive applications with
PRAUA.

• With the introduction of PRAUA we stretch the appli-
cability of cell sleep and switching on/off techniques in
the time horizon leading to improved energy savings.

• The use of fountain coding is proposed to improve the
QoS of users while being able to deactivate more cells.

• We make use of relaxation techniques that are able
to give good solutions to this problem in reasonable
time making it amenable for online implementation.
Thereby, it has theoretical justification for its good
performance.

II. SCENARIO AND SYSTEM MODEL
We consider the downlink of a cellular heterogeneous

communication system employing an OFDM-based resource
allocation. We are interested in switching off capacity units
of the network, e.g. sectors, cells or the entire base station2;
the corresponding decisions are performed at a central net-
work controller. The set of all cells is denoted byM =
{1, 2, ...,M}. Each cell i has total number of resource
blocksBi to allocate to its users. There areN users in the
system to be served and we denote the set of all users as
N = {1, 2, ..., N}. The time is divided intoK time slots of
equal duration∆k. For each time slot, the objective is to find
a resource allocation and user-cell association. Each useris
equipped with a first-in-first-out (FIFO) buffer and we denote
the buffer level (in bits) of userj in slot k by d

(k)
j ≥ 0 with

d
(0)
j = 0 (empty buffer at start). In this work we assume a

sufficiently large buffer and refer to the technology specific
spectral efficiency per resource block of the link from celli

to userj in slot k asω(k)
i,j .

Assumption 1:A reliable estimate of the users’ routes and
the supported spectral efficiency per resource block along
those routes is available at the central controller.
The information for Assumption 1 can be obtained by using
side information or estimated mobility trajectories based
on the high regularity in human mobility [1] together with
techniques to learn path loss maps, e.g., [2].

2In the text that follows we will use cells as a placeholder forany type
of network element that can be switched on/off independently.



The task of our optimization framework is to provide a
schedule of resource allocations satisfying the rate require-
ments of users while trying to reduce the energy consump-
tion. If a userj is served by celli in time slotk we denote
the effective transmit data rate asr(k)i,j := b

(k)
i,j ω

(k)
i,j where

b
(k)
i,j is the number of resource units allocated to userj by

cell i in slot k. We collect the rates allocated by celli to all

users at timek in vectorr(k)
i =

[

r
(k)
i,1 , r

(k)
i,2 , ..., r

(k)
i,N

]T

. We

further useR(k) =
[

r
(k)
1 , r

(k)
2 , ..., r

(k)
M

]

to refer to all rates
allocated over all cells to all users in slotk.

Definition 1 (Instantaneous Cell Load):Given the rate
assignment matrixR(k) for slot k, the load of cell i,
denoted byρ(k)i

(

R
(k)
)

∈ [0, 1] or simplyρ(k)i for notational
simplicity, is defined to be the ratio of the number of resource
blocks allocated to users served by celli ∈ M in slot k to
the total number of resource blocksBi available at this cell,

i.e., ρ(k)i =
∑

j∈N b
(k)
i,j

Bi
.

We useρi := [ρ
(1)
i , . . . , ρ

(K)
i ]T ∈ [0, 1]K to denote

the vector of cell loads at celli for all time slots and
denote the collection of all cell loads over time byP :=
[ρ1, . . . ,ρM ]T ∈ [0, 1]M×K . A consequence of Definition 1
is the following fact:

Fact 1: The load at celli satisfiesρ(k)i > 0 if and only if
(iff) cell i serves at least one user in slotk.

In other words,|ρi 1|0 = 0 iff cell i serves no user in all
time slotsK, where1 ∈ R

K is a vector of ones and| · |0
is the l0-norm. If |ρi 1|0 = 0 cell i can be deactivated for
energy saving reasons.

Remark 1: The l0-norm counts the non-zero elements of
a matrix or vector. For a scalarx ∈ R, thel0-norm is defined
as |x|0 := 1 if x 6= 0 and |x|0 := 0 otherwise.

Buffered delay-sensitive applications

Buffered delay-sensitive application are characterized by
a strict per time slot data rate requirement of each user. In
more detail, the data transmitted to the user is stored in
its buffer from which the delay-sensitive application reads
with constant data ratermin

j . If the scheduling algorithm
allocates a higher data rate to a user in time slotk, i.e.,
r
(k)
i,j > rmin

j , then the additional transferred data remains in

the users bufferd(k)j = d
(k−1)
j +∆k(r

(k)
i,j − rmin

j ) and is read
in the next time slot. If the user is not allocated a sufficiently
high rate in slotk, i.e.,r(k)i,j < rmin

j , the buffer level decreases

asd(k)j = d
(k−1)
j −∆k(r

min
j − r

(k)
i,j ). In every time slotk the

aggregate data rate from the buffer and streamed from a cell
has to be large enough which yields the constraint3

∑

i∈M

r
(k)
i,j +

d
(k−1)
j

∆k

≥ rmin
j . (1)

3Note, that this definition allows users to be served by multiple cells as
well as the buffer in a time slot. In such cases fountain coding is used to
implement mutual information combing.

The buffer level of userj at the end of time slotk is therefore
described by

0 ≤ d
(k)
j = d

(k−1)
j +

∑

i∈M

∆kr
(k)
i,j −∆kr

min
j . (2)

Since each base station has onlyBi resource units to allocate
to users we have the constraint

∑

j∈N

b
(k)
i,j

Bi

=
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i . (3)

III. PROBLEM STATEMENT

We are now in the position to state the optimization
problem that aims at finding the optimal set of active cells,
user-cell assignments and rate allocations while consuming
the least amount of energy. The objective functionE :
[0, 1]M×K → R+ is a combination of static and dynamic
sources of energy consumption. In more detail, each active
cell has static energy consumption ofei per time slot and
a load dependent part which is captured by a concave or
convex functionfi (ρi) ∈ R+ or simply fi. The total
network energy consumption in a so calledon/off scheme
is

Eon/off(P ) =
∑

i∈M

K ei |ρi 1|0 + fi. (4)

The above model assumes that cells are deactivated before
the first time slot and stay inactive for allK time slots. The
model can easily be adapted to modes of operation where
so called micro-sleeps of cells are allowed. In such cases, a
cell can be deactivated for a single time slotk in order to
save energy and be activated in the next time slotk+1. The
energy consumption of such a mode of operation is captured
by

Esleep(P ) =
∑

i∈M

K
∑

k=1

ei

∣

∣

∣
ρ
(k)
i

∣

∣

∣

0
+ fi. (5)

We refer to the scheme where micro-sleep of cells is allowed
asmicro sleep scheme.

The complete optimization problem forbuffered delay-
sensitive applicationswith the on/off schemecan be com-
posed as

min.
∑

i∈M

K ei |ρi 1|0 + fi

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

∑

i∈M

r
(k)
i,j +

d
(k−1)
j

∆k

≥ rmin
j ∀j, k

d
(k−1)
j +

∑

i∈M

∆kr
(k)
i,j −∆kr

min
j = d

(k)
j ∀j, k

0 ≤ d
(k)
j ∀j, k,

(6a)

(6b)

(6c)

(6d)

(6e)

where the optimization variables arer(k)i,j ∈ R+ andρ
(k)
i ∈

[0, 1]. Thereby, (6b) assures that cells are not overloaded and



(6c) guarantees that users receive the required instantaneous
data rate. Constraint (6d) represents the buffer level increase
or decrease at each time slotk.

Problem (6) can be written in a more compact form as

min.
∑

i∈M

K ei |ρi 1|0 + fi

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

k
∑

l=1

(

∑

i∈M

r
(l)
i,j − rmin

j

)

≥ 0 ∀j, k,

(7a)

(7b)

(7c)

since the buffer level at the end of time slotk can be stated
as the data surplus of the aggregated data transmitted up to
time slotk.

In a similar way we can state the problem for themicro
sleep schemewhich uses (5) and we obtain

min.
∑

i∈M

K
∑

k=1

ei

∣

∣

∣
ρ
(k)
i

∣

∣

∣

0
+ fi

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i ∀i, k

k
∑

l=1

(

∑

i∈M

r
(l)
i,j − rmin

j

)

≥ 0 ∀j, k,

(8a)

(8b)

(8c)

where the optimization variables arer(k)i,j ∈ R+ andρ
(k)
i ∈

[0, 1].

IV. ENERGY SAVINGS OPTIMIZATION

Due to their non-convex objective function Problem 7 and
8 are in general hard to solve. Fortunately, both problems
exhibit a structure that can be exploited by low com-
plexity algorithms to find good user-cell association and
rate schedules consuming low energy. In more detail, we
apply a relaxation of thel0-norm in combination with the
Majorization-Minimization method as proposed in [7]. In the
following we derive the algorithm and refer the reader to [7]
for details on the complexity and performance evaluation of
the algorithm itself.

The objective functions of Problem 7 and 8 are not contin-
uous due to the involvedl0-norm. To obtain an optimization
problem that is mathematically tractable, we address the
non-continuity problem of thel0-norm by considering the
following relation [8]:

∀
z∈RK |z|0 = lim

ǫ→0

K
∑

k=1

log(1 + |zk| ǫ−1)

log(1 + ǫ−1)
, (9)

Thus, (7a) can be equivalently written as
∑

i∈M

K ei |ρi 1|0 + fi

= lim
ǫ→0

∑

i∈M

K ei
log(1 + ǫ−1

ρi 1)

log(1 + ǫ−1)
+ fi.

(10)

Similarly, the objective function of themicro sleep scheme
(8a) can be equivalently written as

∑

i∈M

K
∑

k=1

ei

∣

∣

∣
ρ
(k)
i

∣

∣

∣

0
+ fi

= lim
ǫ→0

∑

i∈M

K
∑

k=1

ei
log(1 + ǫ−1 ρ

(k)
i )

log(1 + ǫ−1)
+ fi.

(11)

We obtain a relaxed version of Problem 7 and 8 by
replacing the objective function by the right-hand side of
(10) and (11), respectively and fixingǫ > 0 to a sufficiently
small value which yields

min.
∑

i∈M

K ei
log(1 + ǫ−1

ρi 1)

log(1 + ǫ−1)
+ fi

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈ M

k
∑

l=1

∑

i∈M

(r
(l)
i,j − rmin

j ) ≥ 0 j ∈ N

(12a)

(12b)

(12c)

for the on/off scheme. Accordingly, the we state the relaxed
form of themicro sleep schemeas

min.
∑

i∈M

K
∑

k=1

ei
log(1 + ǫ−1 ρ

(k)
i )

log(1 + ǫ−1)
+ fi

s. t.:
∑

j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈ M

k
∑

l=1

∑

i∈M

(r
(l)
i,j − rmin

j ) ≥ 0 j ∈ N .

(13a)

(13b)

(13c)

Problem 12 and 13 are still not easy to solve because
we need tominimizea non-convex function over a convex
set. Fortunately, [8] presents an optimization framework
based on the majorization-minimization (MM) technique [9]
to handle problems of this type. The framework can be
used to decrease the value of the objective function in a
computationally efficient way. For notational conveniencewe
define the setsX1 andX2 to be the set of rate allocations
R ∈ R

N×M×K
+ and cell loadsP ∈ R

M×K
+ satisfying

constraints 12b-12c and 13b-13c, respectively. In addition,
we define the constant̂ei := ei

log(1+ǫ−1) . Applying the MM
technique to Problem 12 and 13 yields a fast algorithm that
iteratively solves

[(R,P)]
[n+1] ∈ arg min

(R,P)∈X1

∑

i∈M

(

K êi
ρi1

ǫ+ [ρi]
[n]1

+∇fi

(

[ρi]
[n]
)T

ρi

) (14)

for some feasible starting point and where we used the
notation [·][n] to refer to the respective variable in then-
th iteration of the MM algorithm.

Analogous to (14) we arrive at the following iterative



Fig. 2. Network topology. Deployment model for METIS
TC2 [10].

algorithm for Problem 13

[(R,P)]
[n+1] ∈ arg min

(R,P)∈X2

∑

i∈M

(

K
∑

k=1

êi
ρ
(k)
i

ǫ+ [ρ
(k)
i ][n]

+∇fi

(

[ρi]
[n]
)T

ρi

) (15)

for some feasible starting point.

V. EMPIRICAL EVALUATION

In this section we present simulation results of the pre-
sented buffered delay-sensitive optimization framework for
theon/off schemeand themicro sleep scheme. The numerical
evaluation is based on the macro and micro layers of the
”dense urban information society” scenario proposed in the
METIS project [10, Sect. 4.2]. The basic layout is depicted in
Figure 2 where three macro and 12 pico cells are deployed on
rooftops and in the streets, respectively. The main parameters
of the simulation scenario are listed in Table I. To obtain
the information used in Assumption 1 we use the channel
gain data provided by the METIS consortium [11] for the
scenario depicted in Figure 2. Additionally, the provided
mobility traces for cars are used to generate the traffic in
our simulations. We focus on car users only due to their
high mobility which will serve well to illustrate the gains
achievable with anticipatory resource allocation. The data set
for car users provides mobility traces ofN = 420 different
car users in the central deployment and a wrap around model
is used to avoid boundary effects. The data set provides
mobility traces for a time duration of 3600 seconds for each
car user. Further details on the scenario and mobility model
can be found in [10].

We normalize the energy consumption achievable by each

Table I. Network parameters of the simulation [10, Sect.
4.2].

Parameter Value

Antenna height of macro cells 53 m
Antenna height of micro cells 10 m
Carrier frequency of macro cells 800 MHz
Carrier frequency of micro cells 2500 MHz
Max. transmit power of macro cells 43 dBm
Max. transmit power of micro cells 30 dBm
ei of macro cells 400 W
ei of micro cells 100 W
Bi 100
Noise power spectral density -145.1 dBm/Hz
ǫ 10−2

scheme to the energy consumption of the network topology
where all cells are active the whole time. In more detail, we
normalize the network energy consumption byEon/off(1) =
Esleep(1) = K

(
∑

i∈M
ei + fi(1)

)

and evaluate for our
schemes

E′
on/off(R) =

Eon/off(R)

K
(
∑

i∈M ei + fi(1)
) (16)

and

E′
sleep(R) =

Emicro sleep(R)

K
(
∑

i∈M
ei + fi(1)

) . (17)

In order to show the isolated effective gains from the
anticipatory scheduling framework we neglect the dynamic
energy consumption of hardware and usefi(ρ) = 0, ∀i. The
evaluation of the effect of the dynamic energy consumption
on the energy savings has been studied in [7] for energy
saving algorithms without proactive resource allocation.We
expect the effects to carry over to proactive resource allo-
cation schemes and the evaluation of which will be part of
future studies.

We evaluate the proposed algorithm for theon/off scheme
and themicro sleep schemein terms of energy savings capa-
bilities for the described scenario focusing on the influence
of the number of time slots the optimization is done for.
More precise, we find touples of(R,P) for a different
number of time slotsK ∈ {40, 80, 120, 240} with time slot
duration∆k = 1s. The starting pointk0 in the data set where
we apply our optimization framework is selected uniformly
at random from{1, 3600 − K + 1} and the optimization
window is selected as{k0, . . . , k0 +K − 1}.

Figure 3 depicts the achievable normalized network en-
ergy consumption with increasing per user data rate require-
ment for theon/off schemeand themicro sleep scheme. We
observe the intuitive result that with an increasing minimum
per user data rate requirement the normalized network en-
ergy consumption increases. The more user demand there is
in the network the less redundancies are in the system that
can be exploited for energy savings. When comparing the
two energy savings schemes it can be seen that the energy
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Fig. 3. Normalized network energy consumption of themicro
sleep schemeand theon/off schemewith increasing mini-
mum per user rate requirement and for different optimization
windows. Normalization with respect to all cells active the
whole time.

savings potentials with themicro sleep schemeare larger
than the ones with theon/off scheme. The reason lies in the
nature of the schemes that themicro sleep schemeallows
the deactivation and activation of cells on a smaller time
scale which in turn enables the scheme to save energy even
for shorter time periods whereas theon/off schemefinds a
set of active cells only for the full optimization window.
The effect of the size of the optimization window is also
evident from Figure 3. We can see that for both schemes
the normalized network energy consumption is higher for a
smaller optimization window. A reason for this observation
can be found in the better chances of larger optimization
windows to preallocate resources for more data transmission
in advance in order to free some cells from service provision.

VI. CONCLUSION

We have presented an optimization framework that ex-
ploits the knowledge of user-cell trajectories and learned
path-loss maps to find network topologies with low energy
consumption. It finds user-cell association and rate sched-
ules that provide the requested data rate of users and at
the same time reduces the energy consumption of cellular
communication networks. The used energy consumption is
general enough to capture static energy consumption for
cooling, basic power conversion etc. as well as dynamic
load dependent energy consumption. We exploit the end user
devices’ storage capabilities to implement buffered delay-
sensitive applications with proactive resource allocation and
user assignment. Thereby, we stretch the applicability of cell
sleep and switching on/off techniques in the time horizon
leading to significant energy savings. We have formalized
the problem as a non-convex optimization problem and
have presented relaxation techniques that are able to give

good solutions to this problem in reasonable time making it
amenable for online implementation.

We have evaluated the proposedon/off schemeand the
micro sleep schemein a realistic network deployment with
realistic traffic demands and user mobility models. Results
for the METIS TC2 deployment show good energy saving
potentials for both schemes. Even though themicro sleep
schemeyields larger energy savings compared to theon/off
scheme, such a mode of operation might be limiting due to
the potential fast switching on and off of individual cells.
If such shortmicro sleepsof cells are not permitted then
the on/off schemepresents a good way to save energy by
proactively allocating resources to users. Furthermore, the
simulation results show that larger optimization windows
lead to larger energy savings.
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