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ABSTRACT
In this paper, we devise novel techniques for saving energy i
5G wireless systems. By means of anticipated transmission
rates we find user-cell assignments and scheduling policies
that help to identify energy-efficient network topologies.
In particular, the objective of this paper is to find a user-
cell association and rate allocation over time that pravide
the requested Quality of Service (QoS) to all users while
attempting to reduce the energy consumption by identify-
ing the set of active cells consuming the least amount of
energy. The used energy consumption model specifically in- | g:;;;;;‘j;;gm"eam@
cludes the static energy consumption and the dynamic, load- [ ®fferisbene iled
dependent energy consumption of cells. We formalize this
problem as a non-convex optimization problem that accounts
for the requirements of buffered delay-sensitive applicet.  Fjg. 1. Toy-example of a buffered delay-sensitive application
We apply relaxation techniques to find feasible anticipatedcnpedule.
schedules for rate allocation and user-cell assignmerits wi
a low complexity algorithm which is amenable to online

implementation. We characterize achievable energy savingervice quality and reducing energy consumption at the same
by means of simulations in a realistic network scenario undgijme. In particular, PRAUA helps 'smear’ the traffic require
realistic traffic patterns. ments in time and space allowing for maintaining energy-
efficient network configurations over a longer period of
. INTRODUCTION time. Thereby, PRAUA exploits the knowledge about users’
With the advent of the Internet of Things (loT), billions mobility which can be obtained from side information or
of new devices will be connected wirelessly to the mobileestimated with sufficient accuracy due to the high regylarit
communication system of the fifth generation (5G). A widein human mobility [1]. This information along with learned
spectrum of use cases entails that 5G will need to suppopath loss maps [2] can be used to proactively build user-cell
extreme objectives for delay, capacity and energy, which imssignment and resource allocation schedules that greatly
turn requires a high network adaptability to varying user re support energy savings in cellular communication systems
quirements. Todays networks are operated in a static mannéuring off-peak hours. In particular, we develop algorithm
with more or less fixed network configurations providing thethat schedule data transmissions for new service appitati
maximum quality of service (QoS) at all times. Eventhoughwhen it is favorable for energy savings. The developed
such a mode of operation might satisfy delay and capacitynechanisms target new service types enabled by the storage
requirements, it will inevitably lead to unacceptable highcapabilities at user devices. In particular we addressbedf
energy consumption. Therefore, it is of utmost importancelelay-sensitive applications that include services lilcges
to develop new mechanisms to support energy savings icontent streaming (music/video). Such applications mequi
both peak hours as well as in off-peak hours. a constant instantaneous data rate where data can be pulled
Most existing energy saving techniques, such as cekither directly from the access network or from a pre-filled
deactivation or sleep mode, are designed for stationamg usebuffer (depicted in Fig. 1). These new service types allow
and static user demands. These techniques usually habkese stations to delay or bring forward the transfer of data
bad performance in bursty traffic situations. The achievablto users which is the fundamental concept we exploit for
energy savings are nullified by short time increases o&nergy savings. Proactive scheduling has been considered
traffic demand in certain areas. Proactive resource altotat in [3] to improve the QoS of users traveling through the
and user assignment (PRAUA) is a promising approach tservice area of several cells. The presented frameworlsplan
enable 5G to stand up to its high promises by improvinghe resource allocation over a certain time horizon for
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fixed user-cell assignments to maximize the throughput ofor a consecutive order. The multi-connectivity helps talfin
users. The authors of [4] propose a predictive frameworketter solutions for the problem at hand and increases the
for video streaming applications to increase the energyrobustness of our solution.
efficiency in wireless networks. The problem is formulated In the following we summarize the main contribution of
as a mixed integer linear program (MILP) where decisionsur work:
on multiuser rate allocation, video segment quality, angeba « We propose an optimization framework that exploits the
station transmit power are jointly optimized. A heuristic knowledge of user-cell trajectories and learned path-loss
multi stage algorithm is used to derive solutions for the maps. It finds user-cell association and rate schedules
MILP problem by first allocating rates to users and then that provide the requested QoS of users and reduces the
determining the segment quality and active base station set  energy consumption of future cellular communication
The reasoning is based on the observation that efficient rate  networks.
allocation schemes provide power savings. Other analytica « Our model for energy consumption is general enough to
justifications for the perfomance are not given. The work in  capture static energy consumption (cooling, basic power
[5] is most closely related to ours. By proactive resource  conversion etc.) as well as dynamic load-dependent
allocation and video quality decisions the authors reduce energy consumption.
the energy consumption of the whole network by solving « We exploit the end user devices storage capabili-
a mixed integer non-linear problem (MINLP). An algorithm ties to serve buffered delay-sensitive applications with
is proposed that decomposes the association and resource PRAUA.
allocation problem in a master problem and several sub- « With the introduction of PRAUA we stretch the appli-
problems to make the problem tractable. Thereby, the asithor  cability of cell sleep and switching on/off techniques in
leverage energy costs and video quality taking into account  the time horizon leading to improved energy savings.
backhaul costs. The resulting integer programs are solved « The use of fountain coding is proposed to improve the
directly by mathematical solvers and the authors argue to QoS of users while being able to deactivate more cells.
achieve decent scalability. However, this is achieved by « We make use of relaxation techniques that are able
assuming the allocation of an equal number of resource to give good solutions to this problem in reasonable
blocks to all users in the master problem. time making it amenable for online implementation.

In contrast to the above work, we explicitly incorporate Thereby, it has theoretical justification for its good
the user-cell assignment in the optimization framework and  performance.
target energy savings with a guaranteed QoS level instead of Il SCENARIO AND SYSTEM MODEL
maximizing the QoS. Furthermore, we use mathematically i i
justified relaxation techniques instead of heuristics tivée W& consider the downlink of a cellular heterogeneous
solutions ensuring good scalability. In more detail, we exCOmmunication system employing an OFDM-based resource
ploit the possibility to preload and store data on user dss/ic allocation. We are interested in switching off capacitytsini
which will serve as an enabling concept to save energy i the network, e.g. sectors, cells or the entire base statio
the communication system by disengaging certain tells the corresponding decisions are perfprmed at a central net-
By delaying the service provision of some users we mayVork controller. The set of all cells is denoted byl =
avoid to activate cells that are only needed when the traffi¢ 1, 2: .-, M}. Each celli has total number of resource
demand is of bursty nature. The result is a resource usagdocks B; to allocate to its users. There afe users in the
that lets users buffer data in high capacity cells whereas gyStém to be served and we denote the set of all users as
avoids access to cells that are overloaded or switched off = {1,2, ..., NV} The time is divided intak" time slots of
for reasons of energy savings. We use the predicted rout€§ual duratiomy. For each time slot, the objective is to find
of users and the learned path loss coverage maps to firdiresource _alloca_\tloq arjd user-cell association. Eachisiser
such a user-cell association and rate allocation policyeund €duipped with a first-in-first-out (FIFO) buffergnd we demot
the exploitation of the users’ buffers, i.e., when a user ighe buffer level (in bits) of usef in slot & by dg» ) > 0 with
predicted to pass an area without coverage it will be alemtat ¢(* — ¢ (empty buffer at start). In this work we assume a

. T e g
more resources right before, so that the data can be loadegfficiently large buffer and refer to the technology specifi
in the buffer (bridging the coverage hole). To increase thepectral efficiency per resource block of the link from cell
degrees of freedom for the PRAUA by multi-connectivity to g yser; in slot & aswfk-).
multiple cells and to exploit the mutual information re@v  Assumption 1:A reliable estimate of the users’ routes and
from them we propose to use fountain codes [6]. In thene supported spectral efficiency per resource block along
concept of fountain coding a potential infinitely long strea  those routes is available at the central controller.
of encoded symbols is generated from a finite set of datahe information for Assumption 1 can be obtained by using
symbols. Decoding is possible as soon as a particular amousie information or estimated mobility trajectories based
of code symbols is received error free with no requiremengn the high regularity in human mobility [1] together with
techniques to learn path loss maps, e.g., [2].
INotice, that we are considering only capacity cells for deaton.

Basic coverage for other users and services has to be seauedidtiimes. 2In the text that follows we will use cells as a placeholder doy type
We therefore assume basic coverage by some legacy network. of network element that can be switched on/off indepenglent!



The task of our optimization framework is to provide a The buffer level of usej at the end of time slat is therefore
schedule of resource allocations satisfying the rate requi described by
ments of users while trying to reduce the energy consump- (k) (k—1) (k) .
tion. If a user;j is served by celf in time slotk we denote 0<dj” =d; + Z Apryy — Agri™. @)
the effective transmit data rate agj.) = b(kj)w(k) where iemM

b*) is the number of resource units allocated to upday Since each base station has oblyresource units to allocate
to users we have the constraint

K2

cell i in slot k. We collect the rates allocated by celio all

. . T (k) (k)
users at timek in vectorrgk) = [r§ﬁ>,r§g>, mfka,} . We Z biy _ Z Tz}j(k) < Pz(-k)- A3)
further useR™ = |7 788+ to refer to all rates jav Bi e By
alloca_teq over all cells to all users in sIbI_ IIl. PROBLEM STATEMENT
Definition 1 (Instantaneous Cell Load{siven the rate _ . o
assignment matrixR(*) for slot k, the load of celli, We are now in the position to state the optimization

denoted bw(k) R®Y ¢ [0,1] or simplyp(.k) for notational problem that_alms at finding the optlmgl set of_ active cell_s,
A ) v user-cell assignments and rate allocations while consgimin

simplicity, is defined to be the ratio of the number of reseurc e |east amount of energy. The objective functian -

blocks allocated to users served by celf M in slot k to 0,1]M*K s R, is a combination of static and dynamic

the total nurznberb(()kf) resource blocks available at this cell,  gqyrces of energy consumption. In more detail, each active

ie., pl(-k) = e i cell has static energy consumption @f per time slot and
We use p. = [ 0T 0.11X to denote & '0ad dependent part which is captured by a concave or

P oo o eop 7€ 10,1 convex function f; (p;,) € Ry or simply f;. The total

the vector of cell loads at cell for all time slots and ot
denote the collection of all cell loads over time By:— network energy consumption in a so called/off scheme

T MxK e is
Plyee s P €1[0,1 . A consequence of Definition 1
i[s the foII(JJWV\]/ing f[act:] Eowor(P) = > K e;|p; 1], + fi. (4)
Fact 1: The load at cell satisfieSpl(.k) > 0 if and only if M )
(iff) cell i serves at least one user in slot The above model assumes that cells are deactivated before

In other words|p, 1|, = 0 iff cell i serves no user in all the first time slqt and stay inactive for @il time slots_. The
time slots K, wherel € RX is a vector of ones angl- |o model can gasny be adapted to modes of operation where
is the lo-norm. If |p, 1|, = 0 cell i can be deactivated for SO called micro-sleeps of cells are allowed. In such cases, a
energy saving reasons. cell can be deactlvated_ for a _smgle time _skotn order to

Remark 1: Thel,-norm counts the non-zero elements of S2V€ €nergy and be activated in the next time slet.. The
a matrix or vector. For a scalare R, thelo-norm is defined Energy consumption of such a mode of operation is captured

as|z|o :=1if 2 # 0 and|z|y := 0 otherwise.

K
Feee P) = ; “)‘ + fi. 5
Buffered delay-sensitive applications sieed ) Z;\;;e il I ©)

Buffered delay-sensitive application are characterized bye refer to the scheme where micro-sleep of cells is allowed
a strict per time slot data rate requirement of each user. Igsmicro sleep scheme
more detail, the data transmitted to the user is stored in The complete optimization problem fdwffered delay-

its_ buffer from which the delay-sensitive application_ read gensitive applicationsvith the on/off schemean be com-
with constant data rate’"". If the scheduling algorithm posed as

allocates a higher data rate to a user in time glpi.e.,

r{") > ymin_then the additional transferred data remains in min. > Keilp 1)y + f; (6a)
the users buffed!”) = d§-k71) + Ak(n(? — M) and is read iemM X

in the next time slot. If the user is not allocated a suffidient _ TEJ-) (k) . & (6b
high rate in slot, i.e.,rE? < 7", the buffer level decreases DY W S P Vi, k (6b)

B : B.w:™
_ - . JEN Zii,
asd§k) = dlF ™ — Ay (rmin —TE?). In every time slot: the e ! gD

aggregate data rate from the buffer and streamed from a cell (k) 0 < ,min .
has to be large enough which yields the constfaint Ez/\:/tri’j + Ay = Vi k (6¢)
k—1 _ . .
W, B . 8D 137 Al - A= dP ik (6d)
Z rij Tt A, =7 " 1) ieM
iEM k *) .
0<d; Vi, k, (6€e)

SNote, that this definition allows users to be served by mieltiells as L . ) (k)
well as the buffer in a time slot. In such cases fountain apdinused to where the optimization variables arg; e Ry and p; "€
implement mutual information combing. [0, 1]. Thereby, (6b) assures that cells are not overloaded and



(6¢) guarantees that users receive the required instamiane Similarly, the objective function of thenicro sleep scheme
data rate. Constraint (6d) represents the buffer levekame (8a) can be equivalently written as
or decrease at each time slat

. . K
Problem (6) can be written in a more compact form as Z Zei pl(’k)’o s
min. Y K e;lp; 1]y + fi (7a) M p W (11)
ieM (k) = hrn Z Zei 10g(1 + € [il ) + fl
ri.j (k) ) €e—0 M el 10g(1 + €~ )
sty — < Vi,k  (7b) iEMk=
jen Biwij We obtain a relaxed version of Problem 7 and 8 by
k O min ) replacing the objective function by the right-hand side of
> ry—rin ] >0 Vj.k,  (7¢)  (10) and (11), respectively and fixing> 0 to a sufficiently
=1 \ieM small value which yields
since the buffer level at the end of time slotan be stated _ log(1+ ¢! p; 1)
as the data surplus of the aggregated data transmitted up ténin. Z K e; —— + fi (12a)
: , log(1 + ¢ 1)
time slotk. iEM
In a similar way we can state the problem for timécro rF) i
sleep schemahich uses (5) and we obtain s. t.: Z ”(k) < pg ) ie M (12b)
‘ Biw:
K JEN i g
; (k) k
min. € |p; ‘ + fi (8a) . . _
ZM ; 0 >yl -t =0 jEN (120)
rgk-) I=1ieM
s. t.: Z L(k) < pl(-k) Vi, k (8b)  for the on/off schemeAccordingly, the we state the relaxed
jen Biw; ; form of the micro sleep schemas
- M _,min) < g vik (8 . o~ log(1+et pM)
Z Z Tig =T | 2 J5 (8¢) min. Z Zei —~—=+ fi (13a)
=1 \ieM by Vit log(1+¢1)
where the optimization variables arék.) € Ry and p(-k) € r®) &
g i sty =< p i€ M (13b)
[0, 1]. B, (k) i
J g
IV. ENERGY SAVINGS OPTIMIZATION k
. . . . l i .
Due to their non-convex objective function Problem 7 and > (ri) — ") > 0 jeN. (13c)
8 are in general hard to solve. Fortunately, both problems I=1ieM

exhibit a structure that can be exploited by low com-problem 12 and 13 are still not easy to solve because
plexity algorithms to find good user-cell association andye need tominimizea non-convex function over a convex
rate schedules consuming low energy. In more detail, weet, Fortunately, [8] presents an optimization framework
apply a relaxation of théy-norm in combination with the pased on the majorization-minimization (MM) technique [9]
Majorization-Minimization method as proposed in [7]. Ireth to handle problems of this type. The framework can be
following we derive the algorithm and refer the reader to [7]ysed to decrease the value of the objective function in a
for details on the complexity and performance evaluation otomputationally efficient way. For notational convenienee
the algorithm itself. define the setst; and X, to be the set of rate allocations
The objective functions of Problem 7 and 8 are not conting ¢« RﬁxMxK and cell loadsP e foK satisfying

uous due to the involvetd-norm. To obtain an optimization constraints 12b-12¢ and 13b-13c, respectively. In aduitio

problem that is mathematically tractable, we address th@e define the constamt := l(fﬁ Applying the MM
non-continuity problem of thé;-norm by considering the technique to Problem 12 and 13 yields a fast algorithm that
following relation [8]: iteratively solves
K
) log(1 + |zp| € * R.P) "] ]
Vecnr |2l = lim 3 M’{l), @ [(RP) €arg min
=04~ log(l+e€1) (14)
o Z(K a—Pl gy ([ ]w)T )
Thus, (7a) can be equivalently written as et lp]1 i\lPi Pi
ieM i
ZK eilp; o+ fi for some feasible starting point and where we used the
ieM notation [-]”} to refer to the respective variable in the

(10)

, log(1+¢€ ! p, 1) th iteration of the MM algorithm.
= lim K e; — + fi. ) o .
=0 £ log(1+¢€71) Analogous to (14) we arrive at the following iterative



7 // Table |. Network parameters of the simulation [10, Sect.
4.2].
// / Parameter Value

Antenna height of macro cells 53 m
Antenna height of micro cells 10 m

// Carrier frequency of macro cells 800 MHz
/ y I Carrier frequency of micro cells 2500 MHz
/

Max. transmit power of macro cells 43 dBm
Max. transmit power of micro cells 30 dBm

# Macro antenna

/ // Picoantenna e; of macro cells 400 W
) e; of micro cells 100 W
N
Noise power spectral density -145.1 dBm/Hz
1072
/// // |
/” % scheme to the energy consumption of the network topology

where all cells are active the whole time. In more detail, we
normalize the network energy consumption Byne(1) =

Fig. 2. Network topology. Deployment model for METIS Eueed1) = K(Z'GM €i+fi(1)) and evaluate for our

TC2 [10]. schemes
FEonjoft(R)
Egniot(R) = - (16)
algorithm for Problem 13 one K (Xieme + fi(1))
Pyt . and .
(R, P)] €arg min EloofR) — Enmicro sieaff R) a7
K p(k) T (15) K (Zie/vl €; + fi(l))
Z ZéizikJrvfi [pz‘][n] p; In order to show the isolated effective gains from the
€M k=1 Pi anticipatory scheduling framework we neglect the dynamic
for some feasible starting point. energy consumption of hardware and ysg) = 0, Vi. The
evaluation of the effect of the dynamic energy consumption
V. EMPIRICAL EVALUATION on the energy savings has been studied in [7] for energy

In this section we present simulation results of the preSaving algorithms without proactive resource allocatidle.
sented buffered delay-sensitive optimization framewank f €XPect the effects to carry over to proactive resource allo-
the on/off schemand themicro sleep schem@he numerical cation sche_mes and the evaluation of which will be part of
evaluation is based on the macro and micro layers of thfture studies.

"dense urban information society” scenario proposed in the We evaluate the proposed algorithm for th&/off scheme
METIS project [10, Sect. 4.2]. The basic layout is depicted i and themicro sleep schemia terms of energy savings capa-
Figure 2 where three macro and 12 pico cells are deployed dbilities for the described scenario focusing on the infleenc
rooftops and in the streets, respectively. The main pamnmet of the number of time slots the optimization is done for.
of the simulation scenario are listed in Table I. To obtainMore precise, we find touples afR,P) for a different

the information used in Assumption 1 we use the channglumber of time slotss” € {40, 80, 120, 240} with time slot

gain data provided by the METIS consortium [11] for thedurationA; = 1s. The starting poinky in the data set where
scenario depicted in Figure 2. Additionally, the providedwe apply our optimization framework is selected uniformly
mobility traces for cars are used to generate the traffic it random from{1,3600 — K + 1} and the optimization
our simulations. We focus on car users only due to theiwindow is selected ako, ..., ko + K — 1}.

high mobility which will serve well to illustrate the gains  Figure 3 depicts the achievable normalized network en-
achievable with anticipatory resource allocation. Thead&t ergy consumption with increasing per user data rate require
for car users provides mobility traces of = 420 different  ment for theon/off schemend themicro sleep schemé&Ve

car users in the central deployment and a wrap around modebserve the intuitive result that with an increasing minimu

is used to avoid boundary effects. The data set providegser user data rate requirement the normalized network en-
mobility traces for a time duration of 3600 seconds for eaclergy consumption increases. The more user demand there is
car user. Further details on the scenario and mobility modeh the network the less redundancies are in the system that
can be found in [10]. can be exploited for energy savings. When comparing the

We normalize the energy consumption achievable by eactwo energy savings schemes it can be seen that the energy
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Fig. 3. Normalized network energy consumption of thiro
sleep schemand theon/off schemavith increasing mini-
mum per user rate requirement and for different optimizatio
windows. Normalization with respect to all cells active the
whole time.

savings potentials with thenicro sleep schemare larger
than the ones with then/off schemeThe reason lies in the
nature of the schemes that thacro sleep schemallows

good solutions to this problem in reasonable time making it
amenable for online implementation.

We have evaluated the proposed/off schemeand the
micro sleep schemia a realistic network deployment with
realistic traffic demands and user mobility models. Results
for the METIS TC2 deployment show good energy saving
potentials for both schemes. Even though thiero sleep
schemeyields larger energy savings compared to tmgoff
schemesuch a mode of operation might be limiting due to
the potential fast switching on and off of individual cells.
If such shortmicro sleepsof cells are not permitted then
the on/off schemeresents a good way to save energy by
proactively allocating resources to users. Furthermdre, t
simulation results show that larger optimization windows
lead to larger energy savings.
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the deactivation and activation of cells on a smaller time

scale which in turn enables the scheme to save energy ev
for shorter time periods whereas tbe/off schemdinds a
set of active cells only for the full optimization window.
The effect of the size of the optimization window is also

evident from Figure 3. We can see that for both schemes[2]
the normalized network energy consumption is higher for a

smaller optimization window. A reason for this observation

can be found in the better chances of larger optimization
windows to preallocate resources for more data transnmissio
in advance in order to free some cells from service provision [3]

VI. CONCLUSION
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