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Abstract—Simplified broadband beamformers can be con-
structed by sharing a single tapped-delay-line within a narrow-
band subarray. This paper discusses the use of fractional delay
filters to a steering in the digital domain. For the narrowband
subarrays, an optimisation approach is proposed to maintain
an off-broadside look direction constraint as best as possible
across a given frequency range. We demonstrate the advantage
that this approach has for generating beamformers with accurate
off-broadside look direction compared to a benchmark.

I. INTRODUCTION

Antenna array has been widely studied and utilised in

narrowband signal transmission and detection. However many

arrays will be required to operate over a wider bandwidth in

order to enhance performance. In radar for example, the use of

wideband waveforms increases range resolution and reduces

peak power. In communication, wideband transmission can

yield a higher information rate.

While theoretical broadband beamforming requires each

array element to be followed by a tap-delay-line (TDL)

implementing frequency-selective filters [1], for most radar

applications this is not practical: attaching a time delay module

or TDL behind each array element is currently impossible due

to small sensor spacing and limited weight, space and power.

Instead however, elements can be grouped into smaller areas

within the array apertures called subarrays. A compromise

for broadband processing in state-of-the-art broadband radar

hardware is therefore to operate complex multipliers following

the sensor elements. The subarray outputs are then fed into

hardware time delay units in order to reach an acceptable

performance across the operating bandwidth [2].

The architecture of narrowband subarrays followed by a

time delay is referred to as a subarray structure, and has been

addressed e.g. in [3], [4], [5], [6]. The general problem that

has been researched is the tiling of the subarrays in order

to minimize quantization sidelobes [3], [4], [5]. Sometimes

also the narrowband beamforming weights are optimized in

order to suppress sidelobes in the beamformer’s broadband

response [3], [7].

This paper explores a digital implementation of time de-

lay using fractional delay filters, and instead of optimizing

sidelobe levels, in the first instance we are concerned with

minimizing the deviation in the beamformer’s gain in look-

direction. We demonstrate that the combination of fractional

delay filters and optimization of narrowband weight can pro-

vide an acceptable performance.
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Fig. 1. Uniform linear array divided into M narrowband sub-arrays of K
sensors each, which are then combined via M filters vm[n], m = 1 . . .M .
The angle of arrival ϑ0 of an incoming farfield waveform with slowness vector
k/c is measured against broadside.

The paper is organised a follows. The subarray architecture

is defined in Sec. II, with its tap delay line filters constructed as

fractional delay filters in Sec. III. Sec. III reviews the standard

construction of the narrowband beamformers by means of

designing for the centre frequency point if operation over

a wider badnwidth is desired. This beamformer design is

optimised in Sec. IV and demonstrated in Sec. V. Finally,

conclusions are drawn in Sec. VI.

II. ARRAY CONFIGURATION

The subarray configuration addressed in this paper is shown

in Fig. 1, where M patches each contain a subarray of

K elements. he kth array element is positioned at rk =
1

cTs
[xk yk zk]

T in 3-dimensional Cartesian space with coordi-

nates xk, yk and zk, propagation speed c and sampling period

Ts. If a wavefront arrives from an elevation ϑ and azimuth

ϕ, then the delay at the kth sensor relative to the coordinate

system’s origin is τk = kT
ϑ,ϕrk, where kϑ,ϕ is a unit vector

normal to the planar wavefront,

k(θ, φ) =





sin θ cosφ
sin θ sinφ

cos θ



 . (1)

If normalised by the propagation speed c, kϑ,ϕ/c is also

known as the source’s slowness vector. For simplificity, our



analysis below will rely on a uniform linear array as shown

in Fig. 1 containing MK sensors organized into M sub-

arrays comprising K elements each. The element spacing is

d = 1/(2cTs).
Subarray elements are followed by complex weights wk

capable of performing narrowband beamforming. If the M
patches are identically configured, then these weights are

identical cross the M subarrays, and can be organised into

a w as

wH =
[

w1 w2 . . . wK

]

. (2)

As shown in Fig. 1, each subarray then feeds into on of M
tap delay lines with coefficients vm[n], where n is the discrete

time index. The purpose of this tap delay line processor is to

coarsely allign the subarray centre points with respect to each

other. Thereafter, the coefficients w fine-tune the response,

but using the capabilities of a narrowband beamformer which

generally can only be accruate at one specific frequency.

The aim of this paper is firstly adjust the tap delay filters

and secondly to optimise the narrowband coefficient over the

operating frequency range in order to obtain a beamforming

response with a constraint in a particular look direction.

III. BROADBAND SUBARRAY DESIGN

This section details the adjustment of the subarray tap delay

line filters in Sec. III-A, and highlights some of the problems in

adjusting the narrowband beamformers w in order to achieve

a broadband response in Sec. III-B

A. Fractional Delay Filters

To coarsely align the different subarrays for an incoming

waveform, the time delay with which the wavefront impings on

the array must be componensated explicitly. Since these delays

are generally not integer multiples of the sampling period Ts,

fractional delay filters are required.

To approximate a fractional delay, a number of different

filter implementations have been proposed [8]. While the

optimum fractional delay is a sinc function of infinite support,

finite causal version require a truncation with a rectangular

window pN [n] =
∑N

ν=−N δ[n−ν] and a time shift. Such filters

generally are inaccurate particularly close for frequencies close

to half of the sampling rate, but performance can be enhanced

by tapered windows [9], [10]. Using e.g. a von Hann window

w[n] = sin2(
πn

2N
)p2N [n] , (3)

where the sine function tapers a rectangular window

p2N =

{

1 0 ≤ n ≤ 2N
0 otherwise ,

(4)

a filter implementing a fractional delay τm can be constructed

as

vm[n] = sinc[n−N − τm] · w[n−N − τm] (5)

where sinc[n] is the sinc function and τ the fractional delay.

As a demonstration of the accuracy, the sinc and von Hann-

windowed sinc filters for the case N = 16 are depicted in

Fig. 2(a) for τ = 1
2 . To create a causal design, the fractional
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Fig. 2. (a) Impulse responses and (b) group delays for fractional delay filters
constructed from sinc and windowed sinc functions for N = 16 and τ =
16.5.

delay is approximately centred in the filter, such that in fact

τ = N + 1
2 . The group delays for the two systems in

Fig 2(b) show the variability of the rectangularly-windowed

sinc, while the tapered window design exhibits a much better

phase behaviour and closely matches τ with its group delay

over the operating frequency range.

With the above design of (5), the subarrays can be aligned

coarsely with respect to their centre point. If rm is the centre

point of the mth subarray, then τm = kTrm, with k/c the

slowness vector of the incoming waveform.

B. Narrowband Array Response

In this section we will analyse the look direction of a

narrowband subarray beamformer w when operated across a

wider bandwidth. For this prupose, we define a steering vector

a that characterises the phase profile of an incoming waveform

with slowness vector k/c,

a(Ω, ϑ) =
1√
K











ejΩτ1

ejΩτ2

...

ejΩτK











(6)

where Ω is specified normalised angular operating frequency,

and τk = kHrk the delay experienced at the kth array element

positioned at location rk relative to the origin. The dependency

of the l.h.s. term on ϑ is given through the slowness vector

defined in (1), and will be generally omitted below.

Using the steering vector definition above, we want to

design a subarray beamformer w and see how its reference

frequency influences the look direction when the overall beam-

former is operated over a wider frequency range. subarray

weights in w. If the gain in look direction ϑ0 is expected

to be unity, then a frequency-dependent error

e1(Ω) = aH(Ω)w − 1 (7)



can be evaluated over a range of frequencies Ω ∈ [Ωl; Ωu],
leading to an overall cost function

ξ1 =
1

2π

Ωu
∫

Ωl

|e1(Ω)|2dΩ . (8)

Here, Ωl and Ωu are the lower and upper frequency bounds

of the operating range, respectively. A second error can be

defined by neglecting the phase in look direction and only

measuring the error in magnitude, i.e.

e2(Ω) = |aH(Ω)w| − 1 , (9)

with an overall cost ξ2 function across the operating range

defined analogous to (8).

Array weights obtained from delay and sum beamformers

have been suggested for broadband subarrays [11], [12], [6]

using a Wiener-Hopf type solution [13], [14],

w0 = (a(Ω0)a
H(Ω0))

−1a(Ω0)1 . (10)

Wiener-Hopf is simply the pseudo-inverse of the steering

vector at the specified frequency and look direction. Assuming

a unity constraint in look direction, the pseudo-inverse folds

back to delay and sum solution, such that

w0 = a(Ω0) . (11)

Typically the median frequency of the frequency band Ω0 =
Ωu+Ωl

2 serves as a suitable reference point to synthesis the

pattern and frequency response, as suggest e.g. in [1] [11, p.

31]and [15].

In the following we will estimate the total error ξ1 in look

direction as a result of designing the array weights at center

frequency. Evaluating the cost function ξ1 with a narrowband

beamformer designed for frequency Ω0, ξ1 can be evaluated

analytically and shown to yield

ξ1 =
1

2πK2

K
∑

n=1

K
∑

m=1

1

−j(τn + τm)
·

· (e−j(Ωu−Ω0)(τn+τm) − e−j(Ωl−Ω0)(τn+τm))]

+
1

2πK

K
∑

n=1

[
2

jτn
(e−j(Ωu−Ω0)τn − e−j(Ωl−Ω0)τn)]

+
∆Ω

2π
, (12)

where ∆Ω = Ωu − Ωl is the desired bandwidth.

Figure 3 show the cost function described in equation (12)

for different angles of arrival ϑ0 and reference frequencies

Ω0. Notice that in Figure 3 choosing the median frequency

as a reference point approximately corresponds to minimum

total error for angles of arrival up to sin(ϑ0) = .4 or ϑ0 =
23.6◦. Beyond that, the total error varies sinusoidally causing

multiple peaks.

To emphasise that selecting Ω0 as the centre frequency will

not generally minimise ξ1 and ξ2, Fig. 4 depictes the two

cost functions for the case K = 32 and ϑ = 60◦, with

Ωl = π
2 and Ωu = π. For both cost functions, the minima
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Fig. 3. Cost function ξ1 as defined in (12) for a K = 32 elements uniform
linear array.
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Fig. 4. cost function from equation 12 for 32 elements uniform linear array
with β = 0.01.

appear away from the centre. Therefore, designing the subarray

broadband beamformer via the centre frequency will generally

not optimise the response. Therefore, the next section will

propose a different optimisation approach.

IV. PROPOSED BROADBAND SUBARRAY DESIGN

The analysis in Sec. ?? indicated that designing the subarray

weights at the median frequency does not always lead to the

lowest response error in look direction. Therefore, this section

will optimise the coefficient set w and remove the constraint

that the coefficients only apply a phase shift: instead, the

magnitude can also be adjusted such that w ∈ CK .

Given that a(Ω, ϑ0) is the steering vector in look direction

ϑ0 at a normalised angular frequency Ω. Then deviation from

unit gain by a beamformer with weights w ∈ CK is measured

by

e3(Ω) = aH(Ω, ϑ0, ϕ0)w − 1 (13)



Evaluated over a range of frequencies Ω ∈ [Ωl; Ωu], the overall

cost function is

ξ3 =
1

2π

Ωu
∫

Ωl

|e3(Ω)|2dΩ , (14)

and the optimisation problem for the coefficients w can be

stated as

wopt = argmin
w

ξ3 . (15)

The solution to (15) is given by the Wiener solution

wopt = R−1p

with

R =
1

2π

Ωu
∫

Ωl

a(Ω, ϑ0, ϕ0)a
H(Ω, ϑ0, ϕ0)dΩ

and

p =
1

2π

Ωu
∫

Ωl

a(Ω, ϑ0, ϕ0)dΩ .

This solution can be approximated by numerical integration

over a specified number of frequency bins. Alternatively, we

reformulate the problem as a discrete approximation over a set

of N +1 frequencies Ωn = Ωl +n(Ωu −Ωl)/N , n = 0 . . .N
using

e3 =











e3(Ω0)
e3(Ω1)

...

e3(ΩN )











=











aH(Ω0, ϑ0, ϕ0)
aH(Ω1, ϑ0, ϕ0)

...

aH(ΩN , ϑ0, ϕ0)











·w−1 = AHw−1 .

This leads to ξ̂3 = eHe. Differentiation w.r.t. w∗ yields

∂ξ̂3
∂w∗

= AAHwopt −A1 = 0 .

Therefore

wopt = (AAH)−1A1 = A†1

represents the desired solution.

V. SIMULATIONS AND RESULTS

Below, the architecture is simulated over one octave with

Ωl = π
2 and Ωu = π. A total of 32 sensors are split into

M = 4 subarrays of K = 8 elements each. The fractional

delay filters are Hann-windowed sinc functions [9] of length

N = 25. Noting that fractional delay filters are imperfect for

Ω −→ π, the performance at the upper limit of the frequency

operating range cannot be expected to be highly accurate.

Fig. 5 shows the beamformer’s directivity pattern (or gain

response) A(ϑ, ejΩ) for the case where the tapped delay line

filters are designed appropriately as fractional delay filters

for a waveform with angle of arrival of ϑo = −30◦. As a

benchmark, Fig. 5 uses a steering vector for ϑ0 and the centre

frequency of the interval [Ωl; Ωu]. In contrast, Fig. 6 shows

the array response for the case of narrowband filter design

according to (??) and (??). Grating lobes have appeared,
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Fig. 5. Subarray architecture pointing towards ϑ0 = 30◦ with narrowband
beamformers selected w.r.t. centre frequency.
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Fig. 6. Subarray architecture pointing towards ϑ0 = −30◦ with narrowband
beamformers optimised w.r.t. (8).

but the beam response in look direction ϑo = −30◦ better

preserved than in the case of Fig. 5.

The same array configuration is used to implement a look

direction of ϑ0 = 60◦. In this case, the beam squint or

variation of the steering vector a(Ω, ϑ) over the operating

frequency range is great than for the previous example, and

the narrowband beamformers introduce a greater error com-

pared to a broadband beamformer with a tapped delay line

attached to every sensor element. The result for the subarray

architecture and a narrowband design at the centre frequency

of the interval [Ωl; Ωu] is shown in Fig. 7. The introduced

error is such that the desired unit gain in the look direction

cannot be maintained. For the proposed optimized design of

the narrowband beamformer, the resulting directivity patterns

is shown in Fig. 8. There is a significant difference to the

standard case in Fig. 7, as the unit gain in look direction is

maintained. A small deviation towards Ω = π is due to the
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Fig. 7. Subarray architecture pointing towards ϑ0 = −60◦ with narrowband
beamformers selected w.r.t. centre frequency.
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Fig. 8. Subarray architecture pointing towards ϑ0 = −60◦ with narrowband
beamformers optimized w.r.t. (8).

inaccuracies of the fractional delay filters. As a drawback of

the proposed design, Figures. 6 and 8 exhibit stronger grating

lobes compared to the benchmark approach in Figures. 5 and

7. A reason for this is the way the optimal design in Sec. IV

tapers and therefore restricts the aperture of the array, as shown

for the case of K = 8 coefficients for a look direction ϑ = 60◦

in Fig. 9. In parts, this can be bypassed by selecting non-

uniform subarray configurations as discussed in [3], [4], [5].

This can be accommodated by designing, different from our

architecture shown in Fig 1, the narrowband beamforming

coefficients for each subarray individually.

VI. CONCLUSIONS

This paper has proposed a subarray architecture where

fractional delay filters coarsely align subarrays in time. The

implementation utilises windowed sinc functions of moderate

order, which can demonstrate sufficient accuracyclose to up
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Fig. 9. Real and imaginary part of the narrowband coefficients w of the
subarray, optimised w.r.t. broadband maintenance of the look direction ϑ =
60◦.

to half the sampling rate. A finer tuning for every subarray is

performed by narrowband weights. If defined as phase shifts,

these narrowband weights can only provide an accurate answer

at one given frequency, and are likely to generate an error in

the look direction gain at other frequencies.

Therefore, an error minimisation for the subarray gain

deviation in look direction is required. When the designed

operating narrowband array in wider band, the median fre-

quency point is commonly adopted to assign the array weights,

bit shown here to generally yield suboptimal results. For

the delay-and-sum beamformer, this assumption has been

challenged in this paper and shown to cause higher response

error at angles away from broadside direction. Instead, we have

proposed a weight optimisation that can accurately impose the

desired constraint, albeit at the cost of grating lobes due to a

restriction of the narrowband beamformer’s aperture, which is

a byproduct of the optimisation procedure.
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