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Abstract—Knowledge of accurate channel state information
(CSI) is crucial for Massive MIMO systems in order to unfold the
full potential of spatial diversity. In TDD systems, uplink (UL)
and downlink (DL) channels are estimated by transmitting pilots
in the uplink and exploiting channel reciprocity. FDD systems are
more complicated because they require a dedicated downlink
training and corresponding CSI feedback in the UL. For the
latter task, linear analog modulation has been proposed which
avoids digitizing and coding the CSI (see e.g., Echo-MIMO). We
investigate the possibility to utilize these feedback signals for
the (blind) estimation of UL channels, making a separate UL
training obsolete. The method requires the correlative coding
of the feedback signals prior to transmission. As we will show,
the blind channel estimation benefits from the large amount
of DL CSI feedback that arises in Massive MIMO systems.
Consequently, for sufficiently many base station antennas M
(i.e., M > 32 with K = 4 terminals) and low SNR, our method
exhibits larger coherent processing gains than the Echo-MIMO
scheme which requires K additional uplink training symbols.
On the other hand, employing Echo-MIMO with M/2 uplink
training symbols is always superior to SBCE method.

Index Terms—Massive MIMO systems, frequency-division du-
plex, closed-loop training, channel estimation, analog feeback,
blind identification

I. INTRODUCTION

Massive MIMO is a multi-user MIMO technology that
employs a very large number (e.g., tens or hundreds) of
antennas at the base station (BS), which utilizes these to
communicate simultaneously with K single-antenna terminals.
Such systems have recently drawn considerable interest be-
cause they allow to alleviate inter-user interference with a
simple linear precoder and receive combiner [1]. However,
the coherent signal processing at the BS requires accurate
knowledge of the channel state information (CSI). While time-
division duplex systems acquire the high-dimensional CSI
by means of uplink (UL) training (whose overhead depends
only on K) and then exploit the channel reciprocity, the
CSI acquisition in frequency-division duplex (FDD) systems
becomes very costly due to the separate downlink (DL)
training and CSI feedback in the UL. The fact that the amount
of transmission resources required by both tasks grows with
M , motivated several research groups to propose DL CSI
acquisition methods which reduce this overhead. Generally
speaking, these methods assume that there is either some
kind of channel sparsity that can be utilized, or some a-priori
channel knowledge such as long-term channel statistics. The

reduction of the DL training has been considered in e.g.,
[2], where the spatial and temporal channel correlations are
exploited for the careful design of the training pilots, and in
[3] which exploits some (hidden) joint sparsity structure in the
user channel matrices by means of a distributed, compressive
sensing (CS) technique. Methods that focus on the reduction
of the DL CSI feedback (i.e., feedback compression) can
be found in e.g., [4] (projection based), [5] (CS based), [6]
(pattern based). The application of these techniques to analog
feedback schemes1 is proposed in [12] for feedback reduction,
and in [13], [14] to improve the CSI estimation using CS
techniques.

Although the mentioned sparsity assumptions may hold at
millimeter wave frequencies, measurements (see e.g., Figure
4 in [15]) indicate that spatial sparsity assumptions are ques-
tionable at lower frequencies. This gives rise to the following
question: How to reduce the overhead of the (closed-loop) CSI
acquisition in absence of any channel structure?
We tackle this question by investigating a method that utilizes
the analog DL CSI feedback for the estimation of the UL
channels; that is, no dedicated UL training is required. Though
the overhead reduction may be quite limited, we can show
performance gains with respect to the Echo-MIMO scheme
for specific SNR regimes.

One should note that the uplink channels and feedback sig-
nals are unknown. Thus, we have to employ a blind estimation
technique, which typically relies on distinct characteristics of
the (feedback) signals in the UL, e.g., cyclostationarity [16],
higher order cumulants [17] or second-order statistics [18]. We
adopt the latter approach which has led to the AMUSE method
(i.e., Algorithm for Multiple Unknown Signals Extraction) in
[19]. Analog to [20], we artificially shape the spectra of our
feedback signals by utilizing correlative filters at the terminals.
Note that the inherent indeterminacy (i.e., unknown phase rota-
tions of the UL channels and feedback signals) of the AMUSE
algorithm does not impede our MIMO system because the data
signals usually comprise demodulation reference signals.

1The linear analog modulation of the DL CSI feedback, which avoids
digitizing and coding, has been analyzed in [7], and utilized in the Echo-
MIMO scheme [8]. In [9], [10] it is shown for the i.i.d. Rayleigh fading
case, that the analog feedback is optimal the sense of mean square error of
the downlink CSI if the number of feedback symbols equals the number
of feedback channel uses. The practicability of this feedback scheme is
demonstrated in [11].



The paper’s body is organized into four major sections, ad-
dressing the system model, the blind identification (AMUSE)
method, the proposed semi-blind channel estimation method,
and numerical experiments in order to assess the benefits and
weak points of our method.

Notation: Vectors and matrices are given in lowercase and
uppercase boldface letters, respectively. (·)∗,(·)T , and (·)H
denote the complex conjugate, the transposed, and the Her-
mitian transpose. The symbol E [·] denotes the expectation
operator. IM is the M ×M identity matrix. The superscript
# denotes the Moore-Penrose pseudo-inverse. δ(τ) is the
Kronecker delta.

II. SYSTEM MODEL

We consider a time-invariant, frequency-flat, multi-user
MIMO channel2, where a base station, equipped with M
antennas, serves K single-antenna terminals. For a coherent
signal processing, the base station needs to learn both the up-
and downlink channels via training, which is described in the
following two sections.

A. Downlink Training

The downlink channel is learned through known pilots that
are transmitted by the base station array. It is well-known (see
e.g., [21]) that orthogonal training signals with equal power
allocation per transmit antenna are optimal in i.i.d. Rayleigh
fading channels. Let Φ be a ϕ × M unitary complex matrix
(i.e., ΦHΦ = IM ), whose columns represent the training
signals of the individual transmit antennas. Then, the CSI-
bearing signal, received at the k-th terminal, is given by the
vector

rTk = [rk(0) . . . rk(ϕ− 1)]
T
=
√

ϕ/MbTkΦ
T +mT

k (1)

where bk ∈ CM is downlink propagation vector from the
array to the k-th terminal, and mT

k = [mk(0) . . .mk(ϕ− 1)]
T

contains both (downlink) receiver noise and interference. Note
that we keep the instantaneous transmit power of the array
constant; that is, we reduce the transmit power per antenna
with increasing M .

B. Correlative Coding and Uplink Training

The uplink channel is learned through the analog feedback
of the received downlink signals. In order to enable the
separation of the superimposed signals at the base station, the
k-th terminal passes its feedback signal (prior to transmission)
through a distinct (see Section III,(A2)) correlative filter of
order Lk with impulse response ck(t) =

∑Lk

i=0 ck,iδ(t−i). The
symbols of the transmit signal sTk = [sk(0), . . . , sk(ϕ − 1)]T

have the form

sk(t) =
√

βk

Lk∑
i=0

ck,i · rk(t− i), (2)

2The case of multi-antenna terminals is a straightforward extension of the
proposed method, by treating every terminal antenna as a separate terminal.
In addition, the discussed concepts can be extended to frequency-selective
channels by means of subband-wise processing.

where
√
βk denotes the power control coefficient, which

ensures the power constraint E[sk(t)sk(t)
∗] = 1. The CSI-

bearing signal X ∈ CM×ϕ, received at the base station, is

X = A [s1, . . . , sK ]
T
+N (3)

where A = [a1, . . . ,aK ] is the M × K uplink propagation
matrix and N = [n(0), . . . ,n(ϕ− 1)] is a M × ϕ matrix
comprising both (uplink) receiver noise and interference.

III. REVIEW: BLIND IDENTIFICATION ALGORITHM

In this Section, we recapitulate a variant of the AMUSE
algorithm [19] for the blind identification problem, which
arises from the uplink equation (3). Therefore, we consider
the instantaneous (noisy) mixture x(t) of the source symbols
s(t) = [s1(t), . . . , sK(t)]T , given by

x(t) = y(t) + n(t) = As(t) + n(t). (4)

The blind identification problem is to identify both, the un-
known mixing matrix A ∈ CM×K and the unkown source
symbols s(t), given the measurements x(t).

We start by listing a set of assumptions under which the
blind identification algorithm is derived.

(A1) The source symbol vector s(t) is assumed to be a
stationary multivariate random process with known
covariance matrices

Rs(τ) = E
[
s(t+ τ)s(t)H

]
= diag (ρ1(τ), . . . , ρK(τ)) .

The component processes sk(t), 1 ≤ k ≤ K are
mutually uncorrelated, and each possesses the auto-
covariance ρk(τ) = E [sk(t+ τ)sk(t)

∗].
(A2) We assume that the source signals have unit variance

ρk(0) = 1, ∀k, and that for some time lag τ ̸= 0 the
auto-correlation coefficients ρk(τ),∀k are mutually
distinct (i.e., ρk(τ) ̸= ρl(τ) for k ̸= l), and known
to the base station3.

(A3) The additive noise n(t) is modeled as a stationary,
spatially4 and temporally white, zero-mean complex
random process independent of the source signals,

Rn(τ) = E
[
n(t+ τ)n(t)H

]
= δ(τ)σ2

UIM .

Under the above assumptions, the covariance matrices of
the array output exhibit the following structure:

Rx(τ) = E
[
x(t+ τ)x(t)H

]
= ARs(τ)A

H + δ(τ)σ2
UIM (5)

The first step of the blind identification algorithm consists
of whitening the signal part y(t) of the observation (4). The
K ×M whitening matrix W is chosen such that

E
[
Wy(t)y(t)HWH

]
= WAAHWH = IK . (6)

3As we will see in Section IV, this assumption implies that the base station
has the knowledge of the (static) filter impulse responses ck(t),1 ≤ k ≤ K,
and the power control coefficients βk , 1 ≤ k ≤ K.

4The algorithm may be extended to the case of spatially colored noise, see
[18, Section III.A].



The matrix W can be derived from the eigendecomposition of
AAH , which in turn can be calculated using the array output
covariance Rx(0); that is,

AAH = Rx(0)− σ2
UIM . (7)

Note that for any whitening matrix W , there exists a K ×K
unitary matrix U such that WA = U . As a consequence, the
matrix A can be factored as A = W ♯U .

In the second step, the matrix U is identified up to an arbi-
trary phase rotation of its columns. The whitened observations
obey the linear model

z(t) = Wx(t) = Us(t) +Wn(t)

where the signal part is now a unitary mixture of the source
symbols. The covariance matrix Rz(τ) of the process z(t) is
given for some τ ̸= 0 by

Rz(τ) = WRx(τ)W
H

= URs(τ)U
H .

Since U is unitary and Rs(τ) is diagonal, the matrix Rz(τ)
is a normal matrix and thus exhibits the same eigenvalues and
algebraic multiplicities as Rs(τ). Since Rs(τ) is assumed to
have distinct eigenvalues (cf. (A2)), the eigendecomposition
of Rz(τ) identifies the matrix U up to a permutation of the
columns and a column-wise phase rotation. The first indeter-
minacy is resolved by matching the order of the eigenvalues
of Rz(τ) with the order of the diagonal entries of Rs(τ)
(compare [20, IV.A]).

Given W and U , the mixing matrix A can be identified by
Â = W ♯U , and the source signals are recovered by ŝ(t) =
UHWx(t), both up to a terminal-specific phase rotation.

IV. JOINT UL/DL CHANNEL ESTIMATION

A. System Model Requirements

Employing the AMUSE method for the up- and downlink
channel estimation requires specific system model assump-
tions. The following requirements assure assumption (A1):

(A1.a) For the downlink, we have mutually uncorrelated
i.i.d. Rayleigh fading channels.

(A1.b) The additive noise processes mk(t), 1 ≤ k ≤ K
are modeled as stationary, temporally white, mutually
uncorrelated, zero-mean complex random processes;
that is, E [mk(t+ τ)ml(t)

∗] = δ(τ)δ(k− l)σ2
D. (For

simplicity, it is assumed that the downlink noise
variances are equal for all terminals.)

(A1.c) The pilot matrix Φ is square; i.e., ϕ = M .
According to (A1.a)-(A1.c), we have E [rk(t+ τ)rk(t)

∗] =
δ(τ)µk for some µk > 0. Consequently, the auto-covariance
of the k-th feedback signal sk(t) is given by

ρk(τ) = E [sk(t+ τ)sk(t)
∗] = βkµk

Lk∑
i=τ

c∗k,ick,i−τ .

Obviously, Assumption (A2) can be satisfied by an appropri-
ated choice of the filter coefficients ck,i, ∀k, i, as illustrated in
Section V.

B. Semi-Blind Channel Estimation (SBCE) Algorithm

The SBCE method comprises the following steps:
1) Compute the sample covariance matrix

R̂x(0) = ϕ−1XXH . (8)

Denote by λ1, . . . , λK the K largest eigenvalues and
v1, . . . ,vK the corresponding eigenvectors of R̂x(0).

2) Estimate the uplink noise variance σ2
U by averaging the

M −K smallest eigenvalues of R̂x(0). Then, perform a
whitening of the received signal X by left-multiplying it
with the matrix

Ŵ =
[
(λ1 − σ̂2

U)
− 1

2v1, . . . , (λK − σ̂2
U)

− 1
2vK

]H
,

yielding the K × ϕ matrix

Z = [z(0), . . . , z(ϕ− 1)] = ŴX.

3) Compute the sample covariance matrix

R̂z(τ) =
1

ϕ− τ

ϕ−τ−1∑
t=0

z(t+ τ)zH(t)

for some 0 < τ < ϕ.
4) Compute the eigendecomposition R̂z(τ) = V DV H .

Denote by d1, . . . , dK the eigenvalues and ν1, . . . ,νK the
corresponding eigenvectors of D. Find the permutation
σ∗ on {1, . . . ,K} that minimizes∥∥∥[ρ1(τ), . . . , ρK(τ)]

T −
[
dσ(1), . . . , dσ(K)

]T∥∥∥2 .
The unitary matrix U is estimated as Û =[
νσ∗(1), . . . ,νσ∗(K)

]
, and the uplink channel matrix A

is estimated (up to a column-wise phase rotation) as
Â = Ŵ ♯Û .

5) The feedback signals sk, 1 ≤ k ≤ K are estimated (up
to a terminal-specific phase rotation) as

[ŝ1, . . . , ŝK ]
T
= ÛHŴX.

6) An estimate (up to a terminal-specific phase rotation) for
the k-th downlink channel bk is given by

b̂Tk = β
−1/2
k ŝTk (Φ

TCk)
♯,

where Ck is a ϕ× ϕ Toeplitz matrix, defined by

(Ck)i,j =

{
ck,(j−i) , for 0 ≤ j − i ≤ Lk,
0 , otherwise.

Remark 1. In contrast to Section III, the SBCE algorithm
utilizes the sample covariance matrices R̂x(0) and R̂z(τ),
and an estimate for the uplink noise variance σ2

U. Note that the
accuracies of these estimates strongly depend on the sample
support ϕ.

Remark 2. In [18, III.D], a joint diagonalization of R̂z(τ)
for multiple time lags τ is described in order to increase the
robustness of the blind detection algorithm w.r.t. degenerate
eigenvalues of R̂z(τ) for some τ .



V. PERFORMANCE EVALUATION

This section compares the performance of the SBCE and
Echo-MIMO algorithms by computer simulations.

A. Simulation Model
We simulate a massive MIMO base station with M ∈

{16, 32, 64, 128, 256, 512, 1024} antennas, which employs the
SBCE algorithm for the joint estimation of K = 4 up- and
downlink channels. The acquired CSI knowledge is exploited
for the coherent processing of data signals over the array. We
assume that the achieved processing gains are used to reduce
the total transmit powers at the base station and the terminals.
Thus, the signal-to-noise ratio (SNR) during the training phase
is expected to be low, while the data transmissions benefit from
the coherent processing gains.

For the UL and DL channel vectors, we assume that both are
(flat) Rayleigh fading channels, which are spatially correlated
with the exponential model of R = E[aka

H
k ] = E[bkb

H
k ], ∀k:

R =


1 ξ · · · ξM−1

ξ 1
...

. . .
ξM−1 1

 .

The real number ξ, with 0 ≤ ξ < 1, controls the amount of
spatial correlation, which allows us to investigate the impact of
the violation of Assumption (A1.a). When ξ = 0, we recover
i.i.d. Rayleigh fading channels.

Under the above assumptions, the expected DL SNR in
(1) at an arbitrary terminal receive antenna can be written
as γpilot

D = 1/σ2
D. In the UL, the expected SNR per feedback

signal at an arbitrary BS receive antenna is γpilot
U = 1/σ2

U (cf.
(3)). Due to different transmit power constraints (e.g.; 23dBm
and 43dBm for LTE terminals and base stations, respectively),
we assume γpilot

D = 100 · γpilot
U in all simulations.

For the correlative filters ck(t), 1 ≤ k ≤ K, we employ
truncated IIR filters of order Lk = 16 with ck,i = (pk)

i, 0 ≤
i ≤ Lk, and pk = αkexp(jθk). The angles θk are equidistantly
distributed in the interval [0, 2π]; that is, θk = k2π/K. The
modulus αk is set to 0.8 for all terminals. One should note
that we have distinct ρk(τ), 1 ≤ k ≤ K for τ = 1.

As a reference case, we simulate the Echo-MIMO scheme
[8]. This method employs two dedicated training phases for
the downlink and uplink channels. The downlink training is
almost identical to the procedure described in Sections II-A
and II-B except the correlative filtering step in (2), which is
omitted. In the second (uplink) training phase, the terminals
transmit orthogonal pilot sequences [s1, . . . , sK ]

T
=
√
ϕpΦ

T
p

with Φp ∈ Cϕp×K , ΦH
p Φp = IK , ϕp ∈ {K,M/8,M/2} and

E[sk(t)sk(t)
∗] = 1, 1 ≤ k ≤ K. The received pilot is then

Xp =
√
ϕpAΦT

p +Np

where Np follows the same statistics as N in (3). The MMSE
estimate for the uplink channels is

Â =

( √
ϕp

σ2
U + ϕp

)
XpΦ

∗
p.

The downlink channels [b1, . . . , bK ] = B are then given by
the least squares estimate

B̂T = diag (β1, . . . , βK)
−1/2

Â♯XΦ∗.

One should note that the entire process requires 2M + ϕp

resource samples, in contrast to the 2M resource samples
needed by the SBCE method.

B. Achievable CSI Accuracy

We first compare the achievable CSI quality of the SBCE
and Echo-MIMO (EM) methods. Due to the indeterminacy
of a phase rotation in e.g., âk, the typical error metric
E[∥ak − âk∥2]

1
2 is not meaningful for the SBCE method.

Therefore, we quantify the achievable CSI accuracy in terms
of the root-mean-square distance (RMSD) between the two
subspaces that are spanned by ak and âk. By using the natural
metric on the set of one-dimensional subspaces in CM (for
details see [22]), the distance between the two subspaces is

d(ak, âk) = arccos

(
|aH

k âk|
∥ak∥ ∥âk∥

)
(rad),

which yields the RMSD

ϵ = E
[
d(ak, âk)

2
] 1

2 (rad).

Figure 1 displays the averaged UL and DL RMSDs (obtained
by simulating 500 channel realizations) as a function of the
number of base station antennas M for γD = γU + 20dB ∈
{10dB, 20dB}, and for the spatial correlations ξ ∈ {0, 0.8}.
There are several features in the figures we comment upon. As
analyzed in [7], the UL and DL CSI accuracy of the Echo-
MIMO scheme improves with an increasing number of UL
training symbols ϕp, and the DL CSI accuracy increases with
growing M , which is due to the receive diversity in the UL.
For the SBCE method, the number of training symbols that
are used for the UL channel estimation is coupled to M , and
thus the UL RMSD decreases with growing M , and eventually
outperforms the Echo-MIMO method for a sufficiently large
M . One would expect that the corresponding DL RMSD of the
SBCE method excels the RMSD of the Echo-MIMO method,
but this is not the case. Note that the SBCE method relies on
the statistical independence of the UL signals s1, . . . , sK , and
inherently to reinforces this property (i.e., orthogonality) in its
estimates for these signals. More precisely, the whitening step
in (6) produces uncorrelated observations, and the estimate
of the unitary matrix Û is chosen such that the (cross-
) covariance properties are met. Since every UL signal sk
contains the linearly transformed DL channel vector bk, the
reinforced geometric properties pass roughly (distorted by
(CH

k Ck)
−1) to the estimated DL vectors. Though, this effect

does not necessarily imply a performance degradation for the
coherent signal processing in the DL, as we will illustrate
in the next Section. Finally, one should note that the impact
of spatial (antenna) correlation, which constitutes a violation
of Assumption (A1.a), has some detrimental effect only to
the SBCE’s UL CSI accuracy, and becomes negligible at low
SNRs.
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Fig. 1. CSI accuracy in terms of RMSD ϵ (in radians) as a function of the BS antenna number M for K = 4, and for γD = γU +20dB ∈ {10dB, 20dB}.
For the Echo-MIMO (EM) scheme, multiple uplink training lengths ϕp ∈ {K,M/8,M/2} are simulated. The solid lines depict the i.i.d. Rayleigh fading
case (i.e., ξ = 0), and the dashed lines illustrate the case of strong spatial correlation with ξ = 0.8.

C. Achievable Signal-to-Interference-Plus-Noise Ratio (SINR)

In order to assess the impact of the CSI quality onto the
system performance, we evaluate the average UL and DL
SINRs under the assumption of zero-forcing (ZF) precoding
and equalization at the base station. The ZF precoder wk for
the k-th terminal is given by

wk =
Π⊥

B̃k
b̂∗k∥∥∥Π⊥

B̃k
b̂∗k

∥∥∥ , B̃k =
[
b̂∗1, . . . , b̂

∗
k−1, b̂

∗
k+1, . . . , b̂

∗
K

]
where Π⊥

B̃k
= IM − B̃k(B̃

H
k B̃k)

−1B̃H
k denotes the or-

thogonal projector onto the null space of B̃k. The DL data
transmission is described by the equation

r(t) = BTWq(t) +m(t)

with r(t) = [r1(t), . . . , rK(t)], B = [b1, . . . , bK ], W =
[w1, . . . ,wK ], q(t) = [q1(t), . . . , qK(t)], and m(t) =
[m1(t), . . . ,mK(t)]. We assume that E

[
q(t)q(t)H

]
= IK

and E
[
m(t)m(t)H

]
= σ2

DIK , so that we have the same
average transmit power per antenna as for the training phase.
The average DL SINR γk,D at the k-th terminal is then

γk,D =

∣∣bTkwk

∣∣2∑
l ̸=k

∣∣bTkwl

∣∣2 + σ2
D

.

For the UL, we employ an analogue model with ZF equaliza-
tion at the base station side, and unit variance transmit signals.

Figure 2 shows the achieved UL and DL SINRs, averaged
over 500 channel realizations, as a function of the BS antenna
number M . In addition to the CSI obtained by SBCE and
Echo-MIMO (EM) method, we plot the average SINRs
achieved with perfect channel knowledge, which serve as
upper bounds. From the figures, it is easy to verify that the
poor DL CSI accuracy of the SBCE method does not translate
to bad DL SINRs. For the low SNR case γD = 10dB, the
SBCE method outperforms the Echo-MIMO method with
ϕp = K (i.e., using the minimum number of UL pilots) for
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Fig. 2. Average SINR γ̄D as a function of the BS antenna number M for K = 4, and for γD = γU + 20dB ∈ {10dB, 20dB}. For the Echo-MIMO
(EM) scheme, multiple uplink training lengths ϕp ∈ {K,M/8,M/2} are simulated. In contrast to Figure 1, the solid lines depict the results for low SNR
γD = 10dB, and the dashed lines illustrate the results for γD = 20dB.

all M > 32. In contrast, if we assume UL training lengths for
the Echo-MIMO scheme that grow with M then the picture
is different. Comparing the UL SINRs, the Echo-MIMO
method with ϕp = M/2 is always superior to SBCE method,
and in terms of DL SINRs, the Echo-MIMO method with
ϕp = M/8 always excels the SBCE method. However, both
configurations require 50% (resp. 12.5%) more UL resource
samples compared to the SBCE method.

VI. CONCLUSION

We have demonstrated a novel closed-loop channel estima-
tion scheme for FDD Massive MIMO systems, which does not
rely on any spatial sparsity assumption. The proposed SBCE
method requires only M DL and M UL resources samples as
opposed to the (state-of-the-art) Echo-MIMO method with M
DL and M+ϕp UL resources samples. When focusing on the
minimum CSI acquisition overhead (i.e., ϕp = K), we have
seen for sufficiently large M that the SBCE method provides

larger coherent processing gains (in terms of achievable SINRs
for the data signals) than the Echo-MIMO scheme, because
it exploits the increasing amount of CSI feedback symbols
for the UL channel estimation. Of course, by choosing ϕp

sufficiently large, the Echo-MIMO scheme is always able to
outperform the SBCE method. We have seen that the therefore
required ϕp needs to grow with M ; e.g., ϕp = M/2 in order to
provide larger UL and DL performance gains. Regarding the
i.i.d. Rayleigh fading assumption on which the SBCE method
relies on, we have shown that a violation of this assumption
does not cause a signification performance degradation.

There are a number of open problems which are not
addressed in this paper: For frequency-flat channels, the cor-
relative filters of the SBCE method can be implemented in
the analog domain, so that the CSI does not need to be
digitized at the terminal side. For frequency-selective channels,
one has to resort to subband-wise processing which typically
requires digital processing. A potential alternative would be
the application of the blind identification scheme in [23],



which applies for multi-tap MIMO channels.
Second, the complexity of the whitening matrix computation

as well as its pseudo-inverse computation grows with the num-
ber BS antennas M , which demands for efficient processing
algorithms.

Regarding the design of the correlative filters, the question
arises whether there is a better choice than the truncated IIR
filters, whose ”poles” are chosen such that they have the
maximum angular distance.

And finally, performance comparisons with other CSI feed-
back schemes (e.g., CSI quantization) potentially provide
interesting insights.

REFERENCES

[1] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Transactions on Wireless Communica-
tions, vol. 9, no. 11, pp. 3590–3600, November 2010.

[2] J. Choi, D. Love, and P. Bidigare, “Downlink training techniques for
FDD massive MIMO systems: Open-loop and closed-loop training with
memory,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 5, pp. 802–814, Oct 2014.

[3] X. Rao and V. Lau, “Distributed compressive CSIT estimation and feed-
back for FDD multi-user massive MIMO systems,” IEEE Transactions
on Signal Processing, vol. 62, no. 12, pp. 3261–3271, June 2014.

[4] Y. Han, W. Shin, and J. Lee, “Projection based feedback compression
for FDD massive MIMO systems,” in Globecom Workshops, Dec 2014,
pp. 364–369.

[5] P.-H. Kuo, H. Kung, and P.-A. Ting, “Compressive sensing based
channel feedback protocols for spatially-correlated massive antenna
arrays,” in IEEE Wireless Communications and Networking Conference,
April 2012, pp. 492–497.

[6] B. Lee, J. Choi, J.-Y. Seol, D. Love, and B. Shim, “Antenna grouping
based feedback reduction for FDD-based massive MIMO systems,” in
IEEE International Conference on Communications, June 2014, pp.
4477–4482.

[7] T. Marzetta and B. Hochwald, “Fast transfer of channel state information
in wireless systems,” IEEE Transactions on Signal Processing, vol. 54,
no. 4, pp. 1268–1278, April 2006.

[8] L. Withers, R. Taylor, and D. Warme, “Echo-MIMO: A two-way
channel training method for matched cooperative beamforming,” IEEE
Transactions on Signal Processing, vol. 56, no. 9, pp. 4419–4432, Sept
2008.

[9] D. Samardzija and N. Mandayam, “Unquantized and uncoded channel
state information feedback in multiple-antenna multiuser systems,” IEEE
Transactions on Communications, vol. 54, no. 7, pp. 1335–1345, July
2006.

[10] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845–2866, June 2010.

[11] H. Murata, K. Yamamoto, S. Yoshida, S. Denno, D. Umehara, and
M. Morikura, “Experimental results of two-way channel estimation
technique for coordinated multi-point transmission,” in International
Conference on Information, Communications and Signal Processing,
Dec 2011, pp. 1–4.

[12] Y.-G. Lim and C. byoung Chae, “Compressed channel feedback for
correlated massive MIMO systems,” in IEEE International Conference
on Communications Workshops, June 2014, pp. 360–364.

[13] W. Shen, L. Dai, B. Shim, S. Mumtaz, and Z. Wang, “Joint CSIT
acquisition based on low-rank matrix completion for FDD massive
MIMO systems,” IEEE Communications Letters, vol. 19, no. 12, pp.
2178–2181, Dec 2015.

[14] Z. Gao, L. Dai, W. Dai, and Z. Wang, “Block compressive channel
estimation and feedback for FDD massive MIMO,” in IEEE Conference
on Computer Communications Workshops, April 2015, pp. 49–50.

[15] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive MIMO
performance evaluation based on measured propagation data,” IEEE
Transactions on Wireless Communications, vol. 14, no. 7, pp. 3899–
3911, July 2015.

[16] B. Agee, S. Schell, and W. Gardner, “Spectral self-coherence restoral: a
new approach to blind adaptive signal extraction using antenna arrays,”
Proceedings of the IEEE, vol. 78, no. 4, pp. 753–767, Apr 1990.

[17] J. Cardoso and A. Souloumiac, “Blind beamforming for non-gaussian
signals,” IEE Proceedings Radar and Signal Processing, vol. 140, no. 6,
pp. 362–370, Dec 1993.

[18] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, Feb
1997.

[19] L. Tong, V. Soon, Y. Huang, and R. Liu, “AMUSE: a new blind
identification algorithm,” in IEEE International Symposium on Circuits
and Systems, May 1990, pp. 1784–1787 vol.3.

[20] J. Xavier, V. Barroso, and J. Moura, “Closed-form blind channel iden-
tification and source separation in SDMA systems through correlative
coding,” IEEE Journal on Selected Areas in Communications, vol. 16,
no. 8, pp. 1506–1517, Oct 1998.

[21] B. Hassibi and B. Hochwald, “How much training is needed in multiple-
antenna wireless links?” IEEE Transactions on Information Theory,
vol. 49, no. 4, pp. 951–963, April 2003.

[22] S. Smith, “Covariance, subspace, and intrinsic crame acute;r-rao
bounds,” Signal Processing, IEEE Transactions on, vol. 53, no. 5, pp.
1610–1630, May 2005.

[23] J. Xavier, V. Barroso, and J. Moura, “Closed-form correlative coding
(CFC2) blind identification of MIMO channels: isometry fitting to sec-
ond order statistics,” IEEE Transactions on Signal Processing, vol. 49,
no. 5, pp. 1073–1086, May 2001.


