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Abstract—We study the problem of downlink beamforming
for the Weighted Sum Rate maximization (WSR) of Multi-
User Multiple-Input-Single-Output systems with low-resolution
Digital-to-Analog Converters (DACs) in a single-cell setup. The
DACs, modeled as quantizers, are performing a nonlinear
operation on the signals and are linearized using Bussgang
decomposition and a linear approximation of the covariance
of quantized signals. For the maximization of the WSR of the
linearized system, we propose a gradient-based solution and a
lower-complexity heuristic solution, based on the structure of
the globally optimal solution. Through numerical simulations, we
show that taking quantization into account in the filter design
results in significant performance improvement when the number
of transmit antennas is comparable to the number of users. When
the number of transmit antennas becomes much larger than the
number of users, it is found that the heuristic solution achieves
near-optimal performance and that a quantization-aware design
becomes less important.

I. INTRODUCTION

Researchers both in academia and industry have concen-
trated their efforts to the development of the 5th Generation
Wireless Systems (5G), which are expected to offer 1000
times higher mobile data volume per area and 10 to 100
times higher user data rate, at a similar cost and energy
dissipation as today [1]. Two key technologies, compatible
with and, maybe, complementary to each other, have received
voluminous attention and are serious candidates for adoption
in 5G. The first is the use of very large antenna arrays at the
base station to serve a comparatively smaller number of users,
a technique called massive MIMO [2] and the other is the use
of the millimeter-wave (mmWave) frequency bands (30 to 300
GHz), where the vast amount of available spectrum will allow
for higher data rates [3].

A major concern for the adoption of both technologies is the
power dissipation in the Radio Frequency (RF)-chains. On the
transmitter side, substantial portion of the power, especially
in the case of short-range communications, is consumed by
the Digital-to-Analog Converters (DACs). Moreover, the dis-
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sipated power in the DACs increases when the number of RF-
chains increases (massive MIMO) and/or the sampling rates
are increased (mmWave). The power consumed by a DAC
has an exponential dependence on the bit resolution b of the
converter [4]: PDAC ∝ 2b.

In order to tackle the DAC problem, two approaches have
been considered in the literature. The first approach is based
on the deployment of hybrid precoding schemes, with both
analog and digital processing blocks, which exploit the spatial
structure of the channel [5], [6]. The other approach is the use
of low resolution DACs. Systems with such DACs are usually
referred to as coarsely quantized systems, as the converters
are modeled as quantizers. In [7] and [8] modified linear and
non-linear transmit Wiener filter designs were proposed, taking
the low resolution DAC into account. In this work we take the
latter approach, but, instead of the minimization of the mean
square error, we focus on the maximization of the Weighted
Sum Rate (WSR) of Multi-User Multiple-Input-Single-Output
(MU-MISO) systems. Aiming to keep the complexity of the
precoding filter as low as possible, we restrict our attention to
the linear designs.

Linear downlink beamforming for WSR maximization un-
der a total power constraint is a non-convex optimization
problem [9], which has been extensively studied for the case
of unquantized systems. Its globally optimal solution has been
identified using the framework of monotonic optimization. In
[10] the outer polyblock approximation (PA) algorithm was
used, whereas in [11] the Brach-Reduce-and-Bound (BRB)
algorithm was used, having a better scaling with the number
of users than the PA algorithm. In [12] the system model is
extended to include transmitter and receiver hardware imper-
fections.

The complexity of both the PA and the BRB algorithm
increases exponentially with the number of users, which
is prohibitive for use in practical scenarios. Hence, these
algorithms can only be used as benchmarks for the eval-
uation of lower-complexity suboptimal methods. A popular
suboptimal precoding strategy, considered in [12] and [13],
is the weighted Minimum Mean Square Error (MMSE) or
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Fig. 1. Downlink beamforming for a MU-MISO system under low resolution
DAC.

Signal-to-Leakage-and-Noise-Ratio (SLNR) solution, which
balances the trade-off between Signal-to-Noise-Ratio (SNR)
and unintended interference to other users. As shown in [12]
and [13], for systems where the number of transmit antennas
is much larger than the number of users, this beamforming
strategy exhibits near-optimal performance. Motivated by these
results we aimed to identify similar designs for systems with
low-resolution DACs. Our main contribution is the derivation
of a gradient-based and a low-complexity suboptimal heuristic
solution for coarsely quantized MU-MISO systems.

The rest of the paper is organized as follows: The quantized
system model is introduced in Section II, the design of an
optimal uniform quantizer is presented in Section III and the
linearized system model is derived in Sections IV and V. In
Sections VI and VII the optimization problem is formulated
and solved. Finally, simulation results are presented in Section
VIII.

A. Notation

Scalars are denoted by italic letters, vectors by lower case
bold italic letters and matrices by upper case bold italic
letters. (•)∗, (•)T, (•)H,E[•] , tr(•), ‖ • ‖2, ‖ • ‖F,<{•} and
={•} are used for the complex conjugate, transpose, conju-
gate transpose, expectation, trace, Euclidean norm, Frobenius
norm, real and imaginary part. We use diag (A) to denote
diagonal matrix containing only the diagonal elements of A
and nondiag (A) = A− diag (A).

II. QUANTIZED SYSTEM MODEL

Figure 1 shows the channel model of the downlink of
a single-cell scenario, where the base station (BS) has N
antennas serving K single antenna users. The signal for each
user xk ∈ C is precoded with a beamforming vector pk ∈ CN .
The precoded output vector u ∈ CN is given as

u =

K∑
k=1

pkxk = Px, (1)

where P =
[
p1,p2, . . . ,pK

]
∈ CN×K and x =[

x1, x2, . . . , xK
]T ∈ CK . Without loss of generality, the

variance of signal x is taken as E
[
xxH

]
= IK . In our

system, the real parts ui,R and the imaginary parts ui,I of
the unquantized precoded output ui, 1 ≤ i ≤ N are each

quantized by b-bit resolution quantizer. Thus, the resulting
quantized signal is read as:

vi,c = Q (ui,c) = ui,c + qi,c, c ∈ {R, I} , 1 ≤ i ≤ N, (2)

where Q (•) denotes the quantization operation. Now, let
ui = ui,R + jui,I , qi = qi,R + jqi,I and vi = vi,R + jvi,I
be the complex input, the complex quantization error and the
complex output, respectively, of the i-th antenna. Eq. 2 can be
written in vector form as

v = u + q, (3)

with v =
[
u1, u2, . . . , uN

]T
, q =

[
q1, q2, . . . , qN

]T
,v =[

v1, v2, . . . , vN
]T ∈ CN . The signal received by the kth user

takes the form
yk = hTk v + ηk. (4)

Here hk ∈ CN is the channel vector between the kth user and
the BS, and ηk is the zero mean additive white Gaussian noise
with variance σ2

ηk
= E

[
|ηk|2

]
.

III. OPTIMAL QUANTIZER

The quantizer design is based on the minimization of the
mean square distortion between the input ui,c and the output
vi,c of each quantizer, i.e.,

∆opti,c = argmin
∆i,c

E
[
(vi,c − ui,c)2

]
= argmin

∆i,c

E
[
q2
i,c

]
. (5)

Each quantization process has a distortion factor ρ
(i,c)
q to

indicate the relative amount of quantization noise generated,
which is defined as follows

ρ(i,c)
q =

E
[
q2
i,c

]
σ2
ui,c

, (6)

where σ2
ui,c = E

[
u2
i,c

]
. The distortion factor ρ(i,c)

q depends on
the number of quantization bits b, the quantizer type (uniform
or non-uniform) and the probability density function of ui,c.
Under this optimal design 5 of the scalar finite resolution
quantizer, whether uniform or not, the following equations
hold for all 0 ≤ i ≤ N, c ∈ {R, I} [14], [15]:

E[qi,c] = 0, (7)
E[vi,cqi,c] = 0, (8)

E[ui,cqi,c] = −ρ(i,c)
q σ2

ui,c , (9)

where (9) results from (6) and (8). For the uniform quantizer
case, (7) holds only if the probability density function of ui,c
is even.

For a large number of users, the quantizer input signals ui,c
are approximately Gaussian distributed and thus, they undergo
nearly the same distortion factor ρq , i.e., ρ(i,c)

q = ρq,∀i,∀c.
Under the assumption of uncorrelated real and imaginary part
of ui, we easily obtain:

σ2
qi = E[qiq

∗
i ] = ρqσ

2
ui , (10)

ruiqi = E[uiq
∗
i ] = −ρqσ2

ui . (11)



IV. COMPUTATION OF COVARIANCE MATRICES

In order to derive the linearized system model with un-
correlated quantization noise in (4), we need the convariance
matrices involving the unquantized input u, the quantized
outptut signal v and the distortion q. Using (3), the covariance
matrices can be written as

Rvv = E
[
(u + q)

(
uH + qH

)]
= Ruu + Ruq + RH

uq + Rqq (12)

Ruv = E
[
u
(
uH + qH

)]
= Ruu + Ruq. (13)

Hence, Ruq and Rqq have to be computed. For i 6= j

[Ruq]ij = ruiqj = E
[
uiq
∗
j

]
= Euj

[
E
[
uiq
∗
j |uj

]]
(a)
= Euj

[
E[ui|uj ]E

[
q∗j |uj

]]
(b)
≈ Euj

[
ruiujσ

−2
uj ujE

[
q∗j |uj

]]
= ruiujσ

−2
uj E

[
ujq
∗
j

]
(c)
= −ρqruiuj , (14)

where (a) results from the fact that the quantization error qj ,
conditioned on uj , is statistically independent from all other
random variables, (b) follows by approximating the Bayesian
estimator with the linear estimator (which is accurate if u is
jointly Gaussian distributed) and (c) follows from (9). Hence,
from (9) and (14) we get

Ruq ≈ −ρqRuu. (15)

Therefore

Ruv ≈ (1− ρq)Ruu = αqRuu, (16)

where αq = 1− ρq . Similarly, for i 6= j

[Rqq]ij = rqiqj = E
[
qiq
∗
j

]
= Euj

[
E
[
qiq
∗
j |uj

]]
= Euj

[
E[qi|uj ]E

[
q∗j |uj

]]
(a)
≈ Euj

[
rqiujσ

−2
uj ujE

[
q∗j |uj

]]
= rqiujσ

−2
uj E

[
ujq
∗
j

]
(b)
= −ρqrqiuj = −ρqE

[
qiu
∗
j

]
= −ρq (E[ujq

∗
i ])
∗

(c)
≈ −ρq

(
−ρqrujui

)∗
= ρ2

qr
∗
ujui = ρ2

qruiuj , (17)

where (a) follows from approximating the Bayesian estimator
with the linear one, (b) follows from (11) and (c) follows from
(14). So, from (6) and (17)

Rqq ≈ ρq diag (Ruu) + ρ2
q nondiag (Ruu)

= ρqRuu − (1− ρq) ρq nondiag (Ruu)

= ρqRuu − αqρq nondiag (Ruu) . (18)

From (12), (15) and (18) we obtain

Rvv ≈ αq (Ruu − ρq nondiag (Ruu))

= α2
qRuu + αqρq diag (Ruu) . (19)

u v

Qt (·)

q̃

A

Fig. 2. Bussgang decomposition of the quantizer.

V. LINEARIZED SYSTEM MODEL USING BUSSGANG
DECOMPOSITION

According to the Bussgang theorem [16], a nonlinear func-
tion with Gaussian input can be modeled as a linear function
consisting of a linear transformation of the input signal and an
additive distortion that is uncorrelated with the input. Hence,
for the quantizer Q (•) with input u ∼ CN (0,Ruu) ∈ CN
we can write

v = Q (u)

= Au + q̃. (20)

The Bussgang decomposition of the quantizer is depicted in
Fig. 2. A can be computed from the requirement that the
distortion is uncorrelated with the input:

E
[
q̃uH

]
= E

[
(v −Au)uH

]
= 0N×N

⇒ A = RvuR
−1
uu = Ruv

HR−1
uu

(16)
≈ αqIN . (21)

The covariance of the distortion q̃ reads as

Rq̃q̃ = E
[
(v −Au)

(
vH − uHAH

)]
= Rvv −Ruv

HAH −ARuv + ARuuA
H

(16),(21)
≈ Rvv − α2

qRuu

(19)
≈ α2

qRuu + αqρq diag (Ruu)− α2
qRuu

= αqρq diag (Ruu) . (22)

Note that, although the covariance matrix of the distortion q̃
is known, its distribution isn’t. The linearized system model
with uncorrelated quantization noise by using Bussgang de-
composition yields

yk = hT
k

(
αq

K∑
i=1

pixi + q̃

)
+ ηk, (23)

with

Rq̃q̃
(22)
≈ αqρq diag (Ruu)

= αqρq diag
(
PPH

)
, (24)

and it is depicted in Fig. 3.
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Fig. 3. Linearized model of a coarsely quantized MU-MISO system.

VI. OPTIMIZATION PROBLEM

Our aim is to find the beamforming vectors that maximize
the WSR of the system under a transmit power constraint:

max
{pk}Kk=1

K∑
k=1

wkI (xk; yk) s.t. E
[
‖v‖22

]
≤ Ptr. (25)

We can’t write an analytically tractable expression for the
rate I (xk; yk) = h(yk) − h(yk|xk) of user k, but, assuming
Gaussian input xk, we can derive a lower bound for it. First,
h(yk|xk) can be upper bounded as follows:

h (yk|xk) = h

(
hT
k

(
αq

K∑
i=1

pixi + q̃

)
+ ηk

∣∣∣∣∣xk
)

= h

hT
k

αq K∑
i=1,i6=k

pixi + q̃

+ ηk

∣∣∣∣∣∣xk


≤ h

hT
k

αq K∑
i=1,i6=k

pixi + q̃

+ ηk


= h (η′k) , (26)

where equality holds if q̃ and xk are independent. Now,
knowing that, under second moment constraints, the Gaussian
distributed noise is the mutual information minimizing [17],
we assume the quantization noise, and, hence, the effective
noise η′k to be Gaussian distributed to get

I (xk; yk) ≥ log2

(
π eσ2

yk

)
− log2

(
π eσ2

η′k

)
, (27)

with

σ2
yk

= α2
q

K∑
i=1

∣∣∣hT
k pi

∣∣∣2 + hT
kRq̃q̃h

∗
k + σ2

ηk
(28)

σ2
η′k

= α2
q

K∑
i=1,i6=k

∣∣∣hT
k pi

∣∣∣2 + hT
kRq̃q̃h

∗
k + σ2

ηk
. (29)

Hence

I (xk; yk) ≥ log2 (1 + SIDNRk) , (30)

where

SIDNRk =
α2
q

∣∣∣hT
k pk

∣∣∣2
α2
q

∑K
i=1,i6=k

∣∣∣hT
k pi

∣∣∣2 + hT
kRq̃q̃h

∗
k + σ2

ηk

.(31)

Multiplying (30) and summing over all k = 1, . . . ,K we get
K∑
k=1

wkI (xk; yk) ≥
K∑
k=1

wk log2 (1 + SIDNRk) . (32)

Finally, instead of maximizing the actual WSR, we maximize
the weighted sum of the lower bounds, or else, the lower bound
on the WSR:

max
{pk}Kk=1

K∑
k=1

wk log2 (1 + SIDNRk) s.t. E
[
‖v‖22

]
≤ Ptr,

(33)

This problem is non-convex as it has a non-convex objective
function. Note that the Karush-Kuhn-Tucker (KKT) conditions
are necessary for the optimal solution.

VII. SOLUTION TO OPTIMIZATION PROBLEM

In this section, first the globally optimal solution of problem
(33) is discussed and then two suboptimal solutions are
presented.

A. Optimal Solution

The elements of the (diagonal) covariance matrix of the
distortion can be expressed as

[Rq̃q̃]nn = αqρq ‖T nP ‖2F , n = 1, . . . , N, (34)

where T n = ene
T
n and en is a vector whose n-th entry is

equal to 1 and the rest are equal to zero. The power of the
transmit signal v can be written as

E
[
‖v‖22

]
= tr

(
α2
qRuu + Rq̃q̃

)
= α2

q

K∑
k=1

‖pk‖
2
2 + αqρq

N∑
n=1

‖T nP ‖2F . (35)

Introducing the auxiliary variables γk, k = 1, . . . ,K and
tn, n = 1, . . . , N and observing that the phase of vk can
be selected arbitrarily, the optimization problem (33) can be
reformulated as

max
{pk,γk}Kk=1,{tn}

N
n=1

K∑
k=1

wk log2 (1 + γk) (36a)

s.t.

√√√√α2
q

K∑
i=1

∣∣∣hT
k pi

∣∣∣2 +

N∑
n=1

t2n

∣∣∣hT
k en

∣∣∣2 + σ2
ηk

≤
√
γk + 1

γk
αq<

{
hT
k pk

}
,∀k, (36b)

=
{
hT
k pk

}
= 0,∀k, (36c)

α2
q

K∑
k=1

‖pk‖
2
2 + αqρq

N∑
n=1

‖T nP ‖2F ≤ Ptr, (36d)

√
αqρq ‖T nP ‖F ≤ tn,∀n, (36e)

where (36b), (36d) and (36e) are met with equality at the
optimal point. As already mentioned, (36) is a non-convex
monotonic optimization problem, that can be optimally solved



using the BRB algorithm [12]. Getting into the details of this
algorithm is outside the scope of this work, but it suffices to
say that, exploiting the monotonicity of the objective function,
it approximates the Pareto boundary around the optimal solu-
tion. The Pareto boundary is identified by solving at each iter-
ation a series of quasi-convex optimization problems, whose
constraints are identical to those of (36). The complexity of
the algorithm scales exponentially with the number of users;
hence, it is inapplicable to practical scenarios and can only be
used as a benchmark. Therefore, suboptimal alternatives have
to be considered.

B. Gradient-based solution

At first, we rewrite the term corresponding to the quantiza-
tion distortion in the denominator of the SIDNRk as

hT
kRq̃q̃h

∗
k = αqρqh

T
k diag

(
K∑
i=1

pip
H
i

)
h∗k

= αqρq tr

(
h∗kh

T
k diag

(
K∑
i=1

pip
H
i

))

= αqρq tr

(
diag

(
h∗kh

T
k

) K∑
i=1

pip
H
i

)

= αqρq

K∑
i=1

pH
i diag

(
h∗kh

T
k

)
pi, (37)

where the trace identities tr (AB) = tr (BA) and
tr (Adiag(B)) = tr (diag(A)B) were used. Now (28) and
(29) can be rewritten as

σ2
yk

= αq

K∑
i=1

pH
i

(
h∗kh

T
k − ρq nondiag

(
h∗kh

T
k

))
pi + σ2

ηk

(38)

σ2
η′k

= σ2
yk
− α2

q

∣∣∣hT
k pk

∣∣∣2 . (39)

According to (27), the lower bound on the WSR can be
expressed as

S =

K∑
k=1

wk

(
log2

(
π eσ2

yk

)
− log2

(
π eσ2

η′k

))
(40)

and its gradient is found to be

∂S

∂p∗k
=

1

ln 2

[
wkα

2
q

σ2
η′k

h∗kh
T
k +

K∑
i=1

wiαq

(
σ2
η′i
− σ2

yi

)
σ2
yiσ

2
η′i

·
(
h∗ih

T
i − ρq nondiag

(
h∗ih

T
i

))]
pk. (41)

We express the power of the transmit signal as

E
[
‖v‖22

]
= tr

(
α2
qPPH + αqρq diag

(
PPH

))
= tr

(
αqPPH − αqρq nondiag

(
PPH

))
= αq tr

(
PPH

)
. (42)

Input: µ > 0, ε > 0,P ,P old : ‖P − P old‖F > ε
1: while ‖P − P old‖F > ε do
2: P old ← P
3: P ← P + µ ∂S

∂P ∗

4: ζn ←
√

Ptr
αq tr(PPH)

5: P ← ζnP
6: end while

Output: P

Fig. 4. Gradient-projection algorithm for the computation of a locally optimal
solution

Using (41) and (42), a locally optimal solution can be obtained
through the gradient projection algorithm described in Fig. 4.

C. Heuristic solution
Considering again the optimization problem as posed in

(33), with the power of the transmit signal expressed as in
(42), the dual feasiblilty KKT condition of the problem is
expressed as

∂S

∂p∗k
− µαqpk

!
= 0, µ ≥ 0, k = 1, . . . ,K. (43)

Setting µ′ = µ ln 2

−pk+

[
wkαq
µ′σ2

η′k

h∗kh
T
k −

K∑
i=1

wi

(
σ2
yi − σ

2
η′i

)
µ′σ2

yiσ
2
η′i

·
(
H̃i − ρq nondiag

(
H̃i

))]
pk

!
= 0

(44)

where H̃k = h∗kh
T
k . Now setting

ck =
wkαq
µ′σ2

η′k

hT
k pk (45)

λi =
wiσ

2
ηi

(
σ2
yi − σ

2
η′i

)
µ′σ2

yiσ
2
η′i

(46)

we get[
IN +

K∑
i=1

λi
σ2
ηi

(
H̃i − ρq nondiag

(
H̃i

))]
pk = ckh

∗
k.

(47)

Finally, setting√
Pk = ck

∥∥∥∥∥
(
IN +

K∑
i=1

λi(H̃i−ρq nondiag(H̃i))
σ2
ηi

)−1

h∗k

∥∥∥∥∥
2

(48)

pk =

√
Pk

(
IN +

K∑
i=1

λi(H̃i−ρq nondiag(H̃i))
σ2
ηi

)−1

h∗k∥∥∥∥∥
(
IN +

K∑
i=1

λi(H̃i−ρq nondiag(H̃i))
σ2
ηi

)−1

h∗k

∥∥∥∥∥
2

,

(49)



Similarly, to [13], we have now identified the structure of the
optimal solution.

The computational complexity of the problem is not re-
duced, as the computation of the optimal Lagrangian mul-
tipliers {λk}Kk=1 and the power allocation {Pk}Kk=1 is still
NP-hard, but knowing the structure of the solution, we can
derive a suboptimal heuristic solution. In the previous sec-
tion we found that

∑K
k=1 λk = αq

∑K
k=1 ‖pk‖

2
2 and since

αq
∑K
k=1 ‖pk‖

2
2 = Ptr at the optimal point,

K∑
k=1

λk = Ptr. (50)

Instead of finding the optimal Lagrangian multipliers we set
λk = λ = Ptr/K,∀k. The resulting beamforming vectors are

pWWFQ,k =

√
Pk

[
IN +

K∑
i=1

Ptr(H̃i−ρq nondiag(H̃i))
Kσ2

ηi

]-1

h∗k∥∥∥∥∥
[
IN +

K∑
i=1

Ptr(H̃i−ρq nondiag(H̃i))
Kσ2

ηi

]-1

h∗k

∥∥∥∥∥
2

=
√
Pkp̃k. (51)

We name the solution TxWWFQ, as the beamforming direc-
tions are identical to those of TxWFQ [7], but their weights
are different. The power assigned to each user Pk still has
to be computed. The optimization problem in (33) becomes a
power allocation problem

max
P1,...,PK

K∑
k=1

wk log2 (1 + SIDNRk)

s.t. αq
K∑
k=1

Pk ≤ Ptr

Pk ≥ 0, k = 1, . . . ,K, (52)

where SIDNRk is given as

SIDNRk = PkGk

=
Pk

∣∣∣αqhT
k p̃k

∣∣∣2
K∑

i=1,i6=k
Pi

∣∣∣αqhT
k p̃i

∣∣∣2 + hT
kRq̃q̃h

∗ + σ2
ηk

. (53)

Unfortunately, for the WSR maximization, the power alloca-
tion problem is still NP-hard [12]. Therefore, we have to use
a heuristic scheme for the power allocation, too. Similarly
to [12], by neglecting interference and quantization noise,
the problem becomes convex and is easily solved using the
waterfilling algorithm.

VIII. SIMULATION RESULTS

We now wish to compare the algorithms for the max-
imization of the WSR. We consider the newly proposed
heuristic solution taking quantization into account TxWWFQ,
the heuristic solution not taking quantization into account,
presented in [13], which we will refer to as TxRZFBF, the
gradient-based solution and the optimal solution obtained by
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Fig. 5. Lower bound on the sum rate with Gaussian input vs SNR for a
MU-MISO system with N = 4 transmit antennas, 1-bit DAC and K =
4 single-antenna users: TxRZFBF, TxWWFQ, gradient-based solution and
optimal solution.

the BRB algorithm. In our simulations all users have equal
weight and equal noise variance.

First, we consider a MIMO setup where the transmitter has
N = 4 antennas and 1-bit DAC and serves K = 4 users. In
Fig. 5 the lower bound on the sum rate with Gaussian input
is plotted as a function of the SNR. The results presented in
this figure are for only 1 channel realization, due to the fact
that the computation of the optimal solution with the BRB
algorithm is extremely time-consuming. Even though this is
not necessarily true in general, for the channel realization used
in this figure, but also for all the others that we observed,
the optimal solution did not outperform the gradient based
one. Also, the gradient based solution clearly outperforms
TxWWFQ, but this comes at a higher computational cost.
In addition, the heuristic solution TxWWFQ, compared to
TxZFBF, although having the same computational complexity,
offers a significant performance improvement. The observa-
tions made here regarding the suboptimal solutions are still
valid when averaging over 1000 channel realizations.

Again, for the same setup and 1000 channel realizations, we
compare the performance of the filters when a more realistic
input distribution is used. Using the toolbox provided in [18],
we numerically compute and plot in Fig. 6 the actual sum rate,
when the input symbols are drawn from a QPSK constellation.
TxWWFQ still performs much better than TxRZFBF, while
the gradient based solution offers the highest sum rate.

Keeping all other parameters fixed, we increase the number
of transmit antennas to N = 32 and we plot again in Fig. 7
the lower bound on the sum rate with Gaussian input, for 1
channel realization. We can see that, except for the TxRZFBF
solution, all methods have roughly equal performance. Again,
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Fig. 6. Sum rate with QPSK input vs SNR for a MU-MISO system with
N = 4 transmit antennas, 1-bit DAC and K = 4 single-antenna users:
TxRZFBF, TxWWFQ, gradient-based solution and optimal solution.
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Fig. 7. Lower bound on the sum rate with Gaussian input vs SNR for a
MU-MISO system with N = 32 transmit antennas, 1-bit DAC and K =
4 single-antenna users: TxRZFBF, TxWWFQ, gradient-based solution and
optimal solution.

−15 −10 −5 0 5 10 15 20
0

2

4

6

8

Ptr/σ
2
η [dB]

∑ K k
=

1
I

(x
k
;y
k
)

[b
pc

u]

TxRZFBF
TxWWFQ
Gradient-based

Fig. 8. Sum rate with QPSK input vs SNR for a MU-MISO system with
N = 32 transmit antennas, 1-bit DAC and K = 4 single-antenna users:
TxRZFBF, TxWWFQ, gradient-based solution and optimal solution.

this statement is still valid for the suboptimal solutions when
the results are averaged over 1000 channel realizations.

Finally, for the same number of channel realizations, we
compute the sum rate with QPSK input and plot the results
in Fig. 8. Now TxRZFBF achieves the same sum rate as
the other two. Therefore, it is suggested from these results
that, for QPSK input, when the number of transmit antennas
grows larger than the number of users, ignoring quantization
in the filter design does not have a negative impact on the
performance in terms of the sum rate.

IX. CONCLUSION

In this paper we have derived two suboptimal beamforming
solutions for the maximization of the WSR of a MU-MISO
system with low-resolution DACs. We have shown that, when
the number of users is close to the number of transmit anten-
nas, the heuristic solution TxWWFQ, which takes quantization
into account, offers a significant performance improvement
compared to the one that doesn’t. When the number of transmit
antennas becomes much larger than the number of users, for
QPSK input, which is the most natural choice under 1-bit
quantization, taking quantization into account doesn’t offer any
significant gains.

We remind here that the derived solutions aim in maxi-
mizing the lower bound on the WSR with Gaussian input,
not the sum rate with QPSK input. Therefore, although our
results indicate that taking quantization into account becomes
less important as the number of antennas increases, further
research should be conducted to clarify whether this statement
is still valid when an objective function which is more closely
related to the QPSK sum rate is used in the filter optimization.
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