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Abstract—We analyze the problem of approximating vectors
that are superpositions of many closely spaced steering vectors.
Such vectors appear in realistic models for wireless communi-
cation channels and describe single clusters of scatterers. We
question the practice of using a dictionary of steering vectors in
order to find a sparse approximation. Alternative dictionaries can
be obtained from the Karhunen-Loève expansion of the channel
vectors or they can be learned from observed channel realizations.
Furthermore, it is possible to restrict the allowed combinations
of dictionary elements, thereby reducing the complexity of
algorithms that find an approximation. We provide simulation
results and discuss the performance of the various approaches.

Index Terms—Direction-of-arrival (DOA) estimation, Spatial
channel models, Dictionary learning

I. INTRODUCTION

Wireless communication systems with large numbers of
antennas are currently being investigated for use in future
standards [1]. The dimension of the channel vector or matrix
grows along with the number of antennas. Thereby, the
geometric structure of the channel vector is revealed, which is
that of a superposition of a number of propagation paths as
suggested by preliminary measurement campaigns [2], [3]. The
question arises whether for these systems, classical minimum
mean squared error (MMSE) or least-squares (LS) channel
estimation, both of which are agnostic to any kind of structure
in the channel vector, can be improved upon by incorporating
structural prior information.

Models used for simulating channels use superpositions
of many propagation paths that are due to several localized
clusters of scatterers. At least at the base station side, which is
typically situated at an exposed location, all scatterers within
the same cluster have the same angle to within few degrees, e.g.,
±5 degrees for urban macro cells and ±2 degrees for urban
micro cells in the spatial channel model (SCM) as defined
by the ETSI 3rd Generation Partnership Project (3GPP) [4].
On the other hand, models used for estimating channels, use
superpositions of a few distinct propagation paths, each of
which is described by its angle and delay, see, e.g., [5]–[7].
In both cases, the resulting channel vector exhibits a low-
dimensional structure, which can possibly be exploited to
improve channel estimation.

There are many different ways to describe this low-
dimensional structure and then there are different algorithms
that find a representation of the channel vector given such a
structure. The standard example is to assume that the channel
can be described with few columns of an oversampled discrete

Fourier transform (DFT) matrix, i.e., few steering vectors that
correspond to the angles of either the propagation paths or the
centers of the clusters of scatterers. However, this is neither
the only way to describe this low-dimensional structure, nor is
it necessarily the best way. For example, let the channel vector
h be generated by 20 equal-power sub-paths with random
coefficients at angles between −4.3101 and 4.3101 degrees
(the urban microcell scenario in [4]). Perform a Karhunen-
Loève expansion (KLE) of h and only retain the k strongest
components. By definition of the KLE, an approximation of
a realization of a channel vector in the subspace spanned by
those k vectors yields a smaller error (in the mean) than an
approximation in the subspace spanned by any (a priori fixed)
set of k DFT vectors. In this simple case, where clusters only
occur around zero degrees, there is, thus, a more appropriate
dictionary than the DFT dictionary.

The goal of the present paper is to compare different forms
of sparse representations suitable for use with 3GPP spatial
channel models. In particular, we investigate whether sparse
combinations of columns of the oversampled DFT matrix are
efficient to describe channels that are generated according to
the clustered-scatterers channel model or if there are other,
more efficient dictionaries.

II. PROBLEM FORMULATION

We use bold-face lower-case letters for vectors and bold-face
upper-case letters for matrices. Let

a(θ) = 1√
N

[
1 exp

(
iπ sin θ

)
. . . exp

(
iπ(N − 1) sin θ

)]T
denote the normalized steering vector, i.e., the signal recorded
by a uniform linear array (ULA) of N sensors with inter-
element spacing λ/2 at a given time-instant if a source in the
far-field of the array and at an angle θ transmits a harmonic
signal with wavelength λ. Our goal is to find an efficient sparse
representation of a channel vector

h =
∑
θ∈Θ

yθa(θ) ∈ CN (1)

which is given as the superposition of steering vectors with
angles in the set Θ. We assume that the set Θ is large, i.e.,
there are many propagation paths, but localized, i.e., all angles
are relatively similar. For example, the angles in Θ can be
obtained by drawing P samples from a Laplace distribution
with mean δ and standard deviation σ and the coefficients yθ



are selected as unit modulus with random phase. This model
is used in the 3GPP spatial channel model [4]. The parameters
σ, and P depend on the chosen scenario, e.g., urban macro
cell (P = 20, σ = 5◦), urban microcell (P = 20, σ = 2◦), etc.
The distribution of the cluster centers δ depends on the cell
geometry, e.g., on the number of sectors per cell.

A dictionary (or code book) is a fat matrix D ∈ CN×M
of unit-norm vectors, e.g., an oversampled DFT matrix. For
a given dictionary D and channel vector h, the optimal kth
order approximation error is given by

ε0(D,h) = min
x∈CN

||h−Dx||22 s.t. ||x||0 ≤ k (2)

where ||x||0 denotes the number of nonzero entries of x. Then,
a dictionary performs well for approximating channel vectors
h, if the expected value of the optimal approximation error

Eh[ε0(D,h)] (3)

is small. The expectation is with respect to the random variable
h, i.e., with respect to the set Θ and the coefficients yθ.

Our first question is whether for a given parametrization of
the distribution of the channel vector h and a given sparsity
parameter k, there is a dictionary D of the same size as
an oversampled DFT matrix, but which has a smaller mean
approximation error. In Sec. III, we construct a dictionary from
the Karhunen-Loève expansion of h and we learn a dictionary
from observed channel realizations.

However, as it is computationally prohibitive to find the
optimal k-sparse approximation of h, we need to replace (2)
with an approximation

ε(D,h) = ||h−Dx̂(h,D)||22 (4)

where x̂(h,D) are the coefficients of a suboptimal k-sparse
approximation of h in the dictionary D as found, e.g., by the
OMP algorithm or the IHT algorithm [8], [9].

The sparsity constraint ||x||0 ≤ k can also be written as
a union-of-subspaces constraint x ∈ Σk, where Σk are all
k-dimensional subspaces of CM spanned by k canonical basis
vectors. The vector h is then approximated in the union of
subspaces given as the image of Σk under D. Our second
question is whether there is another union-of-subspaces model
Γk, for which the approximation error ε0(Γk,h) is small (in
the mean). In Sec. IV, we show how to obtain a different union-
of-subspaces model if we restrict the allowed combinations of
dictionary elements, for example, by allowing only adjacent
steering vectors.

III. ALTERNATIVE DICTIONARIES

In this section, we present two approaches by which
alternative dictionaries are obtained. First, we show how the
KLE of the channel vector can be calculated for a fixed
cluster center δ and a small standard deviation of the sub-
paths σ. We obtain an alternative dictionary by keeping only
the M2 strongest components and repeating this process for M1
different cluster centers so that the total dictionary is composed
of M1M2 elements. Second, we show how dictionary learning
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Figure 1. Probability density function of a Laplace random variable with 2◦
standard deviation. The dashed lines show the grid points of an orthogonal
DFT matrix with 64 columns

can be used to find a dictionary that is (sub-)optimally adapted
to observed channel vectors.

A. Dictionary derived from the Karhunen-Loève expansion

Let θ be a Laplace random variable with mean 0◦ and
standard deviation σ with a probability density function pθ as
shown in Fig. 1 (for σ = 2◦). Such a random variable describes
the angular distribution of the sub-paths belonging to the same
cluster. We calculate the KLE of a vector h distributed as in (1).
Let yθ = exp

(
iπϕ

)
/
√
P be a unit-modulus complex number

with uniformly distributed phase ϕ ∼ U[−1,1]. Clearly, E[yθ] =
0,E[|yθ|2] = P−1, and E[yθy

∗
θ′ ] = 0 for independent variables

yθ and yθ′ . It follows that E[h] = 0 and the covariance matrix
is given by

Cov[h] = E[hhH] =
∑
θ,θ′∈Θ

E[yθy
∗
θ′]E[a(θ)a(θ′)H]

= P−1
∑
θ∈Θ

E[a(θ)a(θ)H]

= E[a(θ)a(θ)H] .

We calculate the element on the nth off-diagonal of this matrix
analytically: Let b = σ[rad]/

√
2 denote the scale parameter of

the Laplace distribution of θ. We obtain

E[a(θ)a(θ)H]m,m+n = 1
N

∫
pθ(θ) exp

(
− iπn sin θ

)
dθ

= 1
2Nb

∫
exp

(
− |θ|/b− iπn sin θ

)
dθ

≈ 1
2Nb

∫
exp

(
− |θ|/b− iπn θ

)
dθ

=
(
N (1 + (bnπ)2)

)−1

where we used sin θ ≈ θ for small θ. This approximation is
very accurate for small σ, e.g., σ = 2◦, because exp(−|θ|/b)
is rapidly decreasing, see Fig. 1.

The cumulative sum of ordered eigenvalues of the covariance
matrix of h for N = 64 antennas is shown in Fig. 2. It can be
seen that a random channel vector h can be well approximated
by a low-dimensional subspace. By taking the M2 eigenvectors
corresponding to the strongest eigenvalues of the covariance
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Figure 2. Cumulative variance for the 30 largest principal components

Algorithm 1 Generation of SCM dictionary
1) Input: Standard deviation σ, Number of cluster centers

M1, Dimension of approximating subspace M2
2) Calculate eigendecomposition from covariance matrix with

entries (N (1 + (bnπ)2))−1 at nth off-diagonal, where b =
σ[rad]/

√
2

3) Let D0 be the matrix composed of eigenvectors corre-
sponding to the M2 largest eigenvalues

4) Set dm = −1 + (2m− 1)/M1 (uniform grid in [−1, 1])
5) Set Dm = diag

(
a(asin(dm))

)
·D0 (rotate D0 to center

dm)
6) Set D = [D1 D2 . . . DM1 ] ∈ CN×M1M2

matrix, we obtain dictionary vectors for a cluster of scatterers
centered at 0◦ and with standard deviation σ.

We obtain the complete dictionary by rotating this principal
subspace, which is centered at 0◦, to a total of M1 grid points.
For reasons of symmetry we choose equi-spaced grid points
between −1 and 1 in the sine-space of the angle. The algorithm
is described in Alg. 1. We refer to the matrix D, which is
the output of the algorithm, as the SCM-dictionary, i.e., the
dictionary designed according to the SCM.

B. Learning the best dictionary

Both the dictionary composed of steering vectors and that
generated from basis vectors of the KLE of the channel vector
rely on the geometric channel model and this could result in a
performance degradation if the true channel does not follow
the model. A dictionary that is learned from a large number
of actual channel realizations, however, does not suffer such a
drawback. We thus briefly describe the K-SVD algorithm [10],
which can be used to find a dictionary that is (sub-)optimally
adapted to some observed channel realizations.

Let hi ∈ CN for i = 1, . . . , T denote a number of observed
channel realizations, which are generated according to some
unknown model, e.g., actual measurements. Let k denote the
desired approximation order. The dictionary learning problem
is given as

min
X,D

1
T
||H −DX||2F s.t. ||xi||0 ≤ k, i = 1, . . . , T (5)

where ||·||F denotes the Frobenius norm and where the columns
of the matrix H are realizations hi and where xi denotes the
ithe column of X . This is the same optimization problem
as before, but this time we also optimize with respect to
the dictionary. Moreover, the expectation with respect to the
unknown distribution of h is replaced by the large sample
average, i.e., T−1||H −DX||2F ≈ Eh

[
||h−Dx||22

]
.

The optimization problem (5) is very hard to solve and,
thus, tackled with an alternating optimization algorithm. First,
we restrict the problem to dictionaries D with normalized
columns ||dn||2 = 1 and note that this scaling is absorbed
by the X matrix. Then, the variables D and X are updated
in an alternating manner. If D is fixed, a sparse coding xi
for the ith column of H is found by using an algorithm that
approximately solves

min
x
||hi −Dxi||22 s.t. ||x||0 ≤ k

e.g., the OMP algorithm [9]. Then, the columns of D are
updated one after another while only performing minor updates
to X . Let Z = XT so that the nth column zn of Z is the
nth row of X . We can write H −DX as

H −DX = H −
∑
n 6=j

dnz
T

n − djzT

j = Ej − djzT

j

where the matrix Ej = H −
∑
n 6=j dnz

T
n does not depend

on dj . Let Ej =
∑
q σquqv

H
q denote the singular value

decomposition of Ej with σq ≥ 0 and uq and vq the left
and right singular vectors, respectively. Then, the minimization
of (5) with respect to the jth column of D can be written as

min
dj

1
T

∣∣∣∣∣∣∑
q

σquqv
H

q − djzT

j

∣∣∣∣∣∣2
F
.

and is solved by selecting dj = u1 and zT
j = σ1v

H

1 , where
σ1 is the maximal singular value. Thus, the jth column of the
matrix D is updated by u1 and the jth row of the matrix X
is updated by σ1v

H

1 . The algorithm can be initialized with an
oversampled DFT matrix, D0 = DDFT, or with the dictionary
DSCM found with Alg. 1.

IV. ALTERNATIVE UNION-OF-SUBSPACES MODELS

Thus far, we have argued that channel vectors h can be
approximated in the image under D of Σk. However, if the
channel h is really generated from a single cluster of paths, we
can also try to approximate h, for example, with k adjacent
steering vectors. Or, if we are working with the SCM dictionary,
we could restrict the search for an optimal approximation to
linear combinations of dictionary vectors that all correspond
to the same cluster center.

Thus, let Φb ⊂ CN denote a k-dimensional subspace for
b = 1, . . . , B and Γk = ∪b=1,...,BΦb be the union of these
subspaces. We can then approximate h in Γk and evaluate the
optimal approximation error

ε0(Γk,h) = min
ĥ∈Γk

||h− ĥ‖2
2 .

If we choose Φb as the image under D of k basis vectors
ei in CN , where i varies in an index set Ib, and if we
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Figure 3. Mean squared approximation errors for different orders k of the
various algorithms for channel vectors with σ = 2◦

take the union over all possible index sets Ib of size k, we
recover the original approximation problem. This set consists
of
(
N
k

)
distinct subspaces, which is why this problem is hard

to solve. However, if we reduce the allowed combinations of
dictionary vectors, we can reduce the total number of subspaces.
This is desirable for several reasons. First, the complexity
of the optimization problem is reduced significantly and it
may become possible to find an optimal solution instead of
a suboptimal one. Second, by imposing more structure on
the problem, i.e., by allowing less subspaces in which an
approximation is searched, we can achieve a de-noising effect
by approximating h in Γk.

We use the k strongest vectors u1(δ), . . . ,uk(δ) of the KLE
of h for a given cluster center δ and let δ vary on a grid.
But we do not allow combinations of dictionary elements that
correspond to different cluster centers. We obtain a union-of-
subspaces model

Γk = ∪δ∈grid span{u1(δ), . . . ,uk(δ)}

which is adapted to the KLE of h. In this model, the number
of subspaces in Γk corresponds to the number B of grid points
for δ, which may be much smaller than

(
N
k

)
.

Finding the best approximating subspace, i.e., the optimal
δ, is done by correlating h with all subspaces: Let Pb denote
the orthogonal projector onto span{u1(δb), . . . ,uk(δb)}. Then,
the optimal approximation error is given by

ε0(Γ,h) = min
b=1,...,B

‖h− Pbh‖2
2 .

This is completely analogous to finding a direction of arrival
by beamforming, i.e., calculating the projection of h onto the
steering vector a(θ) for all angles θ on a grid.
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Figure 4. Mean squared approximation errors of the various algorithms based
on channels with varying σ and where k = 8 was used as the approximation
order

This approximation method can be generalized to multiple
cluster centers with the fusion frame formalism developed
in [11].

V. SIMULATION RESULTS

We use Monte Carlo estimates to calculate the quantities
Eh[ε(D,h)] and Eh[ε0(ΓΓΓk,h)] for the different dictionaries
D presented in Sec. III and the union-of-subspaces model
Γk presented in Sec. IV. The antenna array used is always a
ULA with N = 64 antennas. All curves are based on 10 000
independent realizations for the channel vectors h for any
given combination of parameters.

The dictionary of steering vectors (which we refer to as DFT
in the plot legends) is an eight times oversampled DFT matrix.
This corresponds to a uniform grid for sin θ with a spacing
of 2/(8N ) between consecutive grid points. The dictionary
derived from the KLE of the spatial channel model (which
we refer to as SCM) is constructed according to Alg. 1 with
M1 = N,M2 = 8 and σ = 2◦. Thus, both dictionaries are of
the same size.

We then use both dictionaries to initialize the dictionary
learning algorithm. Our implementation closely follows the
description in [10], i.e., in the update of the jth dictionary
element, we only use columns of the matrix H −DX that
correspond to training data that actually use the jth element. If
this element is unused, it is replaced by the normalized training
signal hi that is currently least well approximated. We run the
algorithm for ten outer iterations (the inner iterations are the
sequential updates of the columns of the dictionary) and with
training data composed of 100 000 independent realizations
of the channel vector h according to the SCM as in (1) with
σ = 2◦, P = 20, and δ uniformly distributed on [−90◦, 90◦].



Once every outer iteration, we use the OMP algorithm to
compute a new sparse coding matrix X . We obtain different
K-SVD dictionaries for each approximation order k used by
the OMP algorithm. Thus, the K-SVD dictionaries are tailored
to the approximation order k. The resulting dictionaries are
referred to as DFT-K and SCM-K.

The grid used for the cluster centers in the union-of-
subspaces model is the same as that used to construct the
eight times oversampled DFT matrix, i.e., the grid for sin δ
is given as {−1,−1 + 2/(8N ), . . . , 1 − 2/(8N )}. Then, as
for the SCM dictionary, we use the k principal components
of the KLE for a cluster centered at 0◦ as the subspace for
δ = 0◦ and rotate this subspace to all other grid points. We
thus obtain 8N distinct k-dimensional subspaces, in which
we can calculate the optimal approximation (this method is
referred to as Union).

We use two different algorithms, OMP and IHT, that find a
suboptimal approximation of h in the respective dictionaries.
The IHT algorithm is run with a step size parameter µ = 0.1
and for 100 iterations without any convergence criterion. We
then perform a final least squares step on the final index set.

In our first experiment, we compare the rate of decay of the
different approximation errors as we increase the approximation
order k. In our second experiment, we test the robustness of
the different dictionaries, which are all designed for an SCM
with a standard deviation σ = 2◦, with respect to different σ
of the SCM used to generate the channel vectors h.

From the results, which are shown in Figures 3 and 4, we
see that between the eight times oversampled DFT dictionary
and the corresponding SCM dictionary, there is not much of
a difference regarding the approximation error if the OMP
algorithm is used. In contrast, the IHT algorithm is more
sensitive to the choice of dictionary and appears to yield better
results with the DFT dictionary. The results for the union-of-
subspaces model are interesting. The set of subspaces in which
the channels are approximated is considerably smaller than
those used by the OMP and IHT algorithms. Yet, if the true
model coincides with the model used to calculate the KLE (as
in Fig. 3), the approximation is almost as good as that found
by OMP for small orders k and even better for large orders k.
However, as can be seen from Fig. 4, the performance of this
approach degrades more quickly as the model used to generate
the channels deviates from that used to generate the KLE.

VI. CONCLUSION

We conclude from our simulation results that the dictionary
of steering vectors is a good choice for approximating vectors
that are generated according to the 3GPP spatial channel
model with a single cluster. However, given that the learned
dictionaries perform about as good as the DFT dictionary
and in view of the uncertainty about whether the 3GPP
SCM accurately models real communication channels, the
K-SVD dictionary might result to be a good practical choice.
Compared to the DFT dictionary, which is well understood
and widely adopted, the SCM dictionary has the drawback
of being dependent on the channel model, which could be a
problem in practice if the true model does not coincide with
the assumed model.
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