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Abstract—Peak-to-Average Power Ratio is a known issue of
multicarrier waveforms. As the research on waveform design
beyond OFDM is boosted, the PAPR problem has regained at-
tention as a major bottleneck, particularly in spatial multiplexing
schemes. In this paper a high-performance and flexible algorithm
is proposed inspired by concentration of measure concept. The
algorithm is analytically tractable thanks to concentration in-
equalities as a key element in this work. The performance is
guaranteed with rather sharp bounds in a novel way. The PAPR
reduction performance of the method for FBMC-OQAM signal
model has no degradation comparing to OFDM.

Index Terms—Peak-to-Average Power Ratio (PAPR), Filter
Bank MultiCarrier (FBMC), Multiple-Input-Multiple-Output
(MIMO), Spatial Multiplexing, concentration inequalities

I. INTRODUCTION

The PAPR problem refers to frequent occurrence of peaks
in instantaneous power of the transmit signal that are con-
siderably higher than the average power. The PAPR problem
reduces power efficiency in transmitter as nonlinear distortion
needs to be controlled by back-off in power amplifier. This
problem is particularly a major technological bottleneck in
uplink, i.e. handheld devices, due to limited battery life. As
the research on waveforms in context of 5G [1] is actively
pursued, the PAPR problem has regained attention.

There is considerable research done on this issue. A com-
plete overview and categorization of the proposed solutions
needs a separate treatment. The reader is referred to the
overview papers in the literature, particularly [2] provides a
fundamental viewpoint to the problem. A major category of
PAPR reduction methods is based on invertible modifications
to the signal. That is, the receiver is able to recover the original
data with no distortion due to the PAPR reduction, given that
it is aware of the modifications. A classic and well-known
method is referred to as Selected Mapping (SLM) [3] which
is based on generating several versions of the original complex
data sequence for an OFDM symbol by phase rotation of each
data symbol. The branch with the lowest PAPR is transmitted.
The phase rotations, referred to as side information (SI), are
fed-forward to the receiver.

The idea of SLM is based on the fact that the high PAPR is
caused by constructive addition of complex exponentials with
random amplitude and phase drawn from the specific set of
constellation points. If the phase rotations behave statistically
“different”, the alternative versions of an OFDM symbol with
initially high PAPR could have randomly different PAPRs.

Consequently, there is a chance that one of the alternatives
has a lower PAPR. Clearly, the more alternatives generated,
the higher the chance of having a considerably low PAPR.
The same principle has been used in many algorithms. If the
phase rotations are limited to sign changes ±1 and a non-
random way of choosing them is adopted, we have a class of
algorithms referred to as sign selection, sign adjustment, etc.

The PAPR reduction methods can be seen in a different
categorization: methods with a focus on low complexity rel-
ative to technology of the time and methods with a focus on
high performance at the cost of high complexity. The methods
belonging to the former category might be moderated versions,
hence weaker in performance, of methods from the latter
category. The method proposed in this work is focused on
sign selection, though extendible, and is a high complexity
method.

The algorithm proposed in this work provides PAPR reduc-
tion by choosing signs of complex data symbols sequentially.
By each sign decision, the goal is to reduce the expected value
of the PAPR random variable conditioned on the already fixed
signs and fixed data symbols. A sign selection approach has
been previously proposed [4], in which limited information is
extracted from the search space by essentially fixing all the
undecided sign variables to 0. In other words, sign decision is
made without considering contribution of data symbols with
undecided signs. In contrast, the proposed method exploits
the available information by considering expected values. As
further explained in the following, the method allows for a
performance analysis which provides substantially better upper
bounds on reduction, in contrast to the deterministic worst-case
bound presented in [4] and similar works.

The process can be described by considering the probability
measure of PAPR, which is concentrated around its expected
value [2]. Each step of the algorithm shifts the probability
measure of the resulting PAPR to left, which has less ran-
domness due to fixed signs. By the last step, the PAPR is no
more random and is equal to the last expected value.

PAPR reduction methods are usually first proposed for
OFDM signal model. In the recent years, as more advanced
waveforms are being considered, there has been attempts to
extend the available methods to the new waveforms. One of
the pioneering and well-studied waveforms is FBMC with
offset QAM, which is also referred to as OFDM/OQAM. A
key property of FBMC, and similar waveforms, is that better



frequency localization is gained by relaxing the pulse shape
from a rectangular pulse in OFDM to pulses spread over more
than one symbol interval and smooth. This feature incurs
complicity to transceiver algorithms, as the segments of the
signal carrying distinct blocks of complex data symbols are no
more separated. Particularly, in distortionless PAPR reduction
methods, overlapping of adjacent components of the signal
raises the problem of handling this interdependency of signal
modification on PAPR of the past and future segments of the
signal.

Applicability of multi-antenna schemes to a waveform is
also an essential area for investigation. There has been a
number of works, for instance [5], [6], on spatial multi-
plexing and diversity schemes using FBMC signal model,
which is considerably more challenging that that of OFDM.
Considering that research on MIMO FBMC does not seem to
have converged to a standard way, we focus only on spatial
multiplexing with independent data streams on antennas. We
also make a simplifying assumption that all the required
processing is done in the receiver, i.e. no modification to the
signal model is done to accommodate the detection in the
receiver.

The rest of the paper is organized as follows: Section II
formally described the PAPR problem. Then the signal model
of interest is explained in Section III. The proposed algorithm
with the provided analysis are developed in Sections IV and V.
Finally, the PAPR reduction performance is investigated by
simulations in Section VI.

II. THE PAPR PROBLEM

In order to characterize time domain fluctuation of the signal
from the power amplifier’s point of view, PAPR is measured
over short intervals. In addition, oversampling by a factor of L
is necessary to detect the peaks accurately. For OFDM, time-
domain isolation of signal segments that are constructed from
different blocks of N data symbols gives a natural interval
duration of LN samples for PAPR measurement. However,
any length is valid. For FBMC signal no such isolation exists
between consecutive components. For comparison purposes,
we keep the same LN samples for measurement of PAPR
for FBMC signal. Note that the power amplifier input is the
passband signal. The PAPR reduction algorithms, however,
operate in digital baseband part of the transmitter. As a
common metric, the PAPR of baseband signal is considered.

Such characterization gives a random variable defined for
the ith antenna as

γ(i) =
maxn∈{0,1,...,LN−1} |s(n)|2

Pa
, (1)

where Pa = E[|s(n)|2] is the average power and it is assumed
that the interval of interest is shifted to begin at n = 0 for
simplicity.

The PAPR problem exhibits itself as a more challenging
problem when multiple antennas are used in the transmitter.
The distortion caused by high PAPR of multicarrier sig-
nals causes two problems: in-band distortion and out-of-band

distortion. In multiple transmit antennas, the worst level of
out-of-band radiation dominates. In other words, the PAPR
problem of Nt antennas transmitting independent data streams
in parallel can be characterized by the worst PAPR in each
signaling interval. In spatial multiplexing, this is equivalent to
measuring PAPR of a single antenna transmitter over Nt times
longer duration. Formally,

γ = max
i∈{1,2,...,Nt}

γ(i) (2)

Notice that in OFDM, γ is simply a function of a single
block of N data symbols on which the PAPR is measured.
In FBMC, on the other hand, it is a function of several
consecutive N -blocks. This dependence is further investigated
by considering the FBMC signal model.

It is common to use the complementary cumulative distribu-
tion function (CCDF) to interpret the behavior of γ. A sample
reading from such a curve might be as follows: The PAPR
of OFDM or FBMC signal for N = 1024 subcarriers exceeds
11.7 dB with a probability of 10−3. Further implications of this
reading on performance of the system depends on a number of
other factors and an accurate discussion is beyond the scope of
this work. To facilitate the discussions, the constant effective
PAPR γε is defined such that

P(γ > γε) = ε, (3)

where ε is taken as 10−3 for reporting PAPR reduction in this
work.

III. SIGNAL MODEL

One of the most studied waveforms to replace OFDM is
FBMC with offset QAM. A very brief description is that
FBMC allows for better designed pulse shapes by working
with purely real data symbols, but with a spectral efficiency
of 2. Therefore, QAM symbols are broken into two pieces
together with some other modifications necessary for the
orthogonality, which constitutes what is referred to as offset
QAM (OQAM). Desirable localization of pulses in frequency
domain dictates some spreading in time-domain, which leads
to overlapping among the waveform components pertaining
to subsequent blocks of N data symbols. In the following
description, an OFDM or FBMC symbol refer to the waveform
component based on a block of N complex data symbols, or
a segment of the signal associated with that block.

In the signal model presented in the following, oversampling
is included which is essential for PAPR measurement which is
in turn often required in iterative PAPR reduction algorithms.
The FBMC signal transmitted from ith antenna is [7]

s(i)(n) =

+∞∑
m=−∞

N−1∑
k=0

(an,2mγn,2m(p)+ an,2m+1γn,2m+1(p)).

(4)
where

γk,q(n) = hL[n− qLN
2
]ej

2π
LN k(n−

Lh−1

2 )ejφk,q . (5)

The parameter Lh denotes the pulse filter length. In addition,
hL(n) is the oversampled discrete-time pulse. Notice that the
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Fig. 1. Illustration of FBMC symbols for K = 4. Plain lines show the
subsymbols, each pair of which belongs to one FBMC symbol. A rectangle
shows the overall signal in one FBMC signaling interval, constructed by
adding the subsymbols in the same interval.

signaling interval T for FBMC symbols is equivalent to LN
samples. a(i)2m,k and a(i)2m+1,k are purely real processed symbols
taken from complex QAM data symbols which belong to
antenna i, block m and subcarrier k.

Note that h(n) is causal and truncated to the interval
n ∈ {0, 1, . . . ,KN−1}. The signaling interval is the distance
between insertion point of two consecutive waveform compo-
nents related to two consecutive blocks of N data symbols,
which is LN samples. These should justify the length of the
waveform component for an N -block of data symbols to be
equal to (K+1/2)LN . Specifically, the signal on each antenna
can be written as

s(n) =

+∞∑
m=−∞

sm(n) (6)

where antenna index i is dropped and

sm(n) =

N−1∑
k=0

(ak,2mγk,2m(n) + ak,2m+1γn,2m+1(n)). (7)

The overlapping of symbols is depicted in Fig. 1. In order
to formulate the overlapping of neighboring symbols, (6) is
written as

s(n) =

m0−1∑
m=−∞

sm(n) + sm0
(n) +

+∞∑
m=m0+1

sm(n)

= p(n) + sm0
(n) + t(n), (8)

with sm0
(n) being the collection of terms over which PAPR

reduction is to be performed. The terms modulated by the
past and future data symbols are gathered in p(n) and t(n),
respectively. Let the time index n = 0 indicate the first nonzero
sample of sm0

(n). Then the first nonzero sample of t(n)
occurs at n = LN .

A desired algorithm should minimize the PAPR of the
samples in sm0

(n) by taking into account the overlapping
part of p(n). The samples from t(n) are clearly not available
yet. After processing the mth

0 FBMC symbol, the samples of
p(n) + sm0(n) for n ∈ {0, 1, . . . , LN − 1} are ready for
transmission and the remaining ((K − 1) + 1

2 )LN samples
must be buffered for the next symbol(s).

IV. PROPOSED METHOD

Let C be a random vector of complex data symbols and X
be the corresponding vector of sign changes. Consider a cost
function

f(C,X) = max
n
|p(n) + sm0(n)|, (9)

following the definitions in (8) such that data symbols are
replaced by [C0X0, C1X1, . . . , CN−1XN−1]

T , i.e. element-
wise multiplication of data symbols and sign variables.

The objective is to reduce PAPR by making a decision on
sign variable xj such that [8]

E[f(C,X)|c, x∗0:j ] = min
xj∈{−1,1}

E[f(C,X)|c, x∗0:j−1, xj ]

(10)

It can be shown that such decisions on sign variables result in
the sequence of conditional expectations

z0 = EX0:N−1
[f(X,C)|c]

...
zj = EXj:N−1

[f(X,C)|x∗0:j−1, c]
...

zn = E∅[f(X,C)|x∗, c] = f(x∗, c). (11)

Further more, we have [8]

z0 ≥ z1 ≥ . . . ≥ zn. (12)

That is, the last conditional expectation is over a constant
variable and yields the PAPR value f(x∗, c). In addition, it
is upper-bounded by initial one. Therefore, the sign decision
rule of (10) leads to PAPR reduction in a tractable way.

Furthermore, (12) implies that for any subset of sign vari-
ables the same trend holds. It is reported [8] that first sign
variables, i.e. those with lower indices, have relatively low
impact on the PAPR reduction. Therefore, a refined algorithm
is proposed that uses a subset of sign variables with indices
ending at N − 1.

A. Calculation of conditional expectations

Clearly, calculation of conditional expectations is a key ele-
ment of the algorithm. In particular, with PAPR as the choice
for f , analytic calculation of the conditional expectations is not
available and estimation is used as an intermediate solution.
Let c ∈ Mn be realization of the random vector of complex
data symbols. For making decision on the jth sign variable,
we need to obtain

g±j (c) = E[f(C,X)|C = b, X0:j−1 = x∗0:j−1, Xj = ±1],
(13)

the estimated value of which is obtained by a sample average
with Q shots:

ĝ±j (c) =
1

Q

Q∑
l=1

f(C,Xl)|C=c,Xl0:j−1=x
∗
0:j−1,X

l
j=±1, (14)



where Xl has the same distribution as X. Clearly E[ĝj(c)] =
gj(c).

It will be shown in Section V that it is possible to approach
distribution of the estimation via concentration inequalities.

B. Side Information

An important aspect of such distortionless PAPR reduction
methods is undoing the modifications in the receiver. The
possible options include
• A reliable transmission of the required information.
• Using implicit side information.
• Discarding the signs of data symbols in receiver.

The first option, i.e. feed-forwarding of the modifications to the
receiver, is related to availability of such channel and needs to
be embedded in a protocol. Therefore, its feasibility depends
on many other factors. The second option is a different, but
related, algorithmic challenge. The third option can be viewed
as a coding that adds a single (sign) bit to each complex data
symbol on a set of subcarriers. This bit is discarded in the
receiver.

As a conclusion, we suffice to reporting the rate loss
incurred by the third option. Note that this causes the same
rate loss as the amount of SI required for undoing the process
when all or a pre-determined subset of data symbols undergo
a separate modification. The rate loss due to the refined
algorithm on signs variables xv:N−1 is

rl(v) = log2 |M| −
1

N
log2

[
|M|v

(
|M|
2

)N−v]
=
N − v
N

. (15)

Therefore, for the case of v = n/2, the rate loss is 0.5 b/sym
instead of 1 b/sym for 16QAM modulation. Clearly, for a
constellation of higher size the rate loss decreases.

C. MIMO extension

In this work, spatial multiplexing with Nt independent
streams of data symbol on each antenna is assumed. That
is, the waveforms on different antennas are not coupled in
anyway. As explained before, the worst PAPR needs to be
minimized over each measurement interval. Therefore, either
a cost function f dependent on all streams must be defined or
a strategy must be adopted to apply the same cost function to
different branches. A trivial approach is to identically perform
the reduction method on each antenna. It is interesting to see if
a better performance can be achieved at the same complexity
and rate loss.

A very successful yet simple idea is directed SLM (dSLM)
[9] which takes generation of each alternative signal by a new
phase vector, as done in SLM method, as a resource unit.
Instead of allocating equal number of resource units to every
antenna, they are allocated step by step to the antenna with
the worst PAPR at each iteration. That is, if there are U total
phase vectors available, ordinary SLM (oSLM) would do SLM
on each antenna with U/Nt branches, while dSLM makes no
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Fig. 2. Performance of dSLM versus oSLM showing how mimization of
worst-case PAPR of several independent branches allows better results. N =
64, 16QAM, Nt = 4, U=128. That is, 32 phase vectors per branch for oSLM
and 32× 4 = 128 phase vectors for dSLM.

prediction for the number of resource units required for each
branch. It turns out that dSLM performs considerably better
than oSLM for the same amount of computational resources,
which indicates that minimization of worst-case PAPR offers
more freedom.

Fig. 2 shows the performance of dSLM for 64 subcarriers
and 16QAM and 4 antennas. Note that a reduction of 4.5 dB
is achievable for 32×4 phase vectors, while the corresponding
oSLM with 32 phase vectors per antenna provides about 4 dB
of reduction.

Concerning the proposed method for sign selection, a dy-
namic resource allocation targeting the worst PAPR is inter-
esting. In this scheme each sign variable, hence sign decision,
is considered as a resource unit. Note that sign decision at
each iteration is done by comparing conditional expectations
over the remaining undecided sign variables. This leads to a
decreasing trajectory of conditional expectations which at the
last step coincides with the reduced PAPR value. Therefore,
a change in number of sign variables once the formation of
trajectory is started causes disruption in the working of the
algorithm. In other words, a key fact about the algorithm is
that the number of sign variables for each branch must remain
unchanged during the process for each symbol interval.

A strategy to keep the rate saving of refined algorithm by
using an ending subset of signs is as follows. For each symbol,
resource units are assigned according to the initial PAPR
values, constrained by a minimum and maximum number,
such that the branch with the lowest PAPR always gets the
minimum and the branch with the largest always gets the
maximum. Formally, consider γk represent initial PAPR of
the kth branch. The minimum number of signs per branch is
denoted by ρmin and the maximum by ρmax. The number of
assigned signs for branch k is given by the mapping

ρk=

(
1

1− γmin

γk
γmax

− γmin

1− γmin

)
(ρmax−ρmin)+ρmin. (16)



Then sign variables active for branch k have indices N −
ρk : N − 1. The performance of this strategy is discussed in
Section VI.

V. ANALYSIS

Two aspects of the algorithm could benefit from some ana-
lytic investigation: PAPR reduction capability and estimation
of conditional expectations. In both cases, the concentration
inequalities prove to be applicable tools while standard ways
might be tedious and out of reach.

A. Estimation of Conditional Expectations

Statistical behavior of the estimator in Section V is difficult
to analyze due to the maximum operator in definition of PAPR
metric. However, it will be shown that using concentration
inequalities, probability of deviation of the estimation from
its true value can be upper bounded.

Here we use the McDiardmid’s inequality. Given that ran-
dom variables Xi are independent, if it can be shown for u(X)
that

|u(x)− u(x′)| ≤ dk (17)

when only the kth component of x and x′ disagree, McDi-
armid’s inequality holds and states that for every α ≥ 0

P(|u(X)− E[u(X)]| ≥ α) ≤ 2e
− 2α2∑

k d
2
k . (18)

To drive the inequality the bounded differences of (17) must
be considered for ĝj . For iteration j, consider X1:Q and Y1:Q

such that Xl ∈ {−1, 1}N , Yl ∈ {−1, 1}N . As there are j− 1
sign decisions already made, X l

0:j−1 = Y l0:j−1 = x∗0:j−1 for
l = 1, . . . , Q are constant. The single disagreement between
X1:Q and Y1:Q is such that X l

m = Y lm for all l and m except
for l′ and m′. That is, X l′

m′ = −Y l
′

m′ . Then we have

|ĝj(c,X1:Q)− ĝj(c,Y1:Q)| =

∣∣∣∣∣ 1Q
Q∑
l=1

[
f(c,Xl)− f(c,Yl)

]∣∣∣∣∣
=

∣∣∣∣∣ 1Q
Q∑
l=1

[
max
k
|s(k,Xl)| −max

k
|s(k,Yl)|

]∣∣∣∣∣
≤ 1

Q

Q∑
l=1

∣∣∣∣max
k
|s(k,Xl)| −max

k
|s(k,Yl)|

∣∣∣∣
≤ 1

Q

Q∑
l=1

max
k

∣∣s(k,Xl)− |s(k,Yl)
∣∣

=
1

Q

1√
NPa

2|cm| ≤
1

Q

1√
NPa

d (19)

where

|max |p(t)| −max |q(t)|| ≤ max |p(t)− q(t)| (20)

is used and d = 2maxx∈M |x|. Then McDiarmaid’s inequality
shows that for α ≥ 0

P(|ĝ±j (c)− g
±
j (c)| ≥ α) ≤ 2 exp

(
−α2 2Pa

d2
QN

(N − j)

)
(21)

This forms a relation between number of shots Q and proba-
bility of deviation by α from the true values.

The above analysis on the estimations can be related to
sign decision as follows. Without loss of generality, assume
that g+j (c) < g−j (c) and let g∗j (c) = g+j (c) denote the lower
expectation, i.e. the one belonging to the desired sign. The
other case follows from re-labeling. Furthermore, let ĝ∗j (c) =
min{ĝ+j (c) , ĝ−j (c)}. Here we show that the following bound
holds for α ≥ 0.

P
(∣∣ĝ∗j (c)− g∗j (c)∣∣ ≥ α)<4 exp

(
−α2 2Pa

d2max

QN

(N − j)

)
(22)

Assume that |ĝ±j (c)− g±j (c) | < α. There are two cases:
1) ĝ+j (c) ≤ ĝ−j (c): here the estimates follow the true order

so that ĝ∗j (c) = ĝ+j (c). Hence

g∗j (c)− α < ĝ∗j (c) < g∗j (c) + α.

2) ĝ+j (c) > ĝ−j (c): here the estimates follow NOT the true
order so that ĝ∗j (c) = ĝ−j (c). We have

ĝ−j (c) > g−j (c)− α ≥ g+j (c)− α = g∗j (c)− α

and

ĝ−j (c) < ĝ+j (c) < g+j (c) + α = g∗j (c) + α.

Hence |ĝ±j (c) − g±j (c) | < α implies |ĝ∗j (c) − g∗j (c) | < α.
Therefore,

P
(∣∣ĝ∗j (c)− g∗j (c)∣∣ ≥ α) ≤ P

(∣∣ĝ+j (c)− g+j (c)
∣∣ ≥ α)

+ P
(∣∣ĝ−j (c)− g−j (c)

∣∣ ≥ α) (23)

which gives the desired result using (21).
Despite the provided analysis on estimation of conditional

expectations, establishing a direct relation to the PAPR reduc-
tion performance remains a problem to tackle.

B. Bounds on PAPR reduction

The sequence of conditional expectations in (11) gives z0 as
the upper bound on zn, which is the reduced value of f . The
constant z0 can be seen as realization of random variable Z0

which is a function of only C. This can provide two general
methods for investigating the performance of the algorithm: a)
Analysis of distribution of Z0 by concentration inequalities, b)
numerically estimating the distribution of Z0.

Concentration of Crest Factor of the OFDM signal around
its expected value is studied in [10], [2], [11] using concentra-
tion inequalities. In [8] McDiarmid’s inequality is applied in a
slightly different way to establish concentration of the partial
expectation Z0 around µ = E[f(C,X)] to derive

P(E[f(C,X)|C]− E[f(C,X)] ≥ α) ≤ e−2α
2Pa/d

2

. (24)

A numerical approach to performance analysis requires
offline estimation of distribution of Z0 [8]. This can be better
appreciated by referring to Fig. 3 where the CCDF of Z0 is
used to represent a random upperbound. Unfortunately, the
concentration inequalities applied to the problem do not turn



out to be very informative. On the other hand, estimated
distribution of Z0 provides a rather brick-wall upper-bound.

The estimation approach to reduced PAPR upperbound can
be further analyzed as follows. The term E[f (X,C)] can be
estimated with arbitrary α-deviation for fixed outage prob-
ability using q-shot estimator before and again by applying
concentration inequalities. The average reduction capability
under the proposed algorithm is then given by

E[f (X∗,C) |C] ≤ 1

Q

Q∑
l=1

ĝ0
(
Cl
)
+Nα (25)

where the inequality holds with probability given by (21)
within α-deviation and X∗ is the estimated sign vector in each
iteration. The additional n-fold α-deviation stems from the
fact that the estimated conditional expectation deviates from
the true value by α in each deviation.

VI. SIMULATION

As discussed before, detection performance, i.e. effects
on bit error rate, is irrelevant as the proposed method is a
distortionless method. Therefore, only the waveform gener-
ation in transmitter is simulated to measure the PAPR. The
investigation is thoroughly done for single antenna OFDM
model in [8], including comparison with methods of the same
class and a few well-known methods in terms of performance
and rate loss . Here the proposed algorithm is applied to FBMC
signal model, as well as a multiple antenna with independent
data streams in OFDM model.

As discussed in [8], the method provides a considerable
PAPR reduction even for fairly low number of shots, e.g.
Q = 5, in estimation of conditional expectations. Focusing on
performance versus rate loss, rather than complexity, a higher
number of shots Q = 100 is used throughout the following
simulations. The performance increases slowly for higher Q.

The CCDF curves for the case of single antenna OFDM
with N = 64, QPSK and 16QAM modulation orders are
shown in Fig. 3. The curve labeled “uncoded” refers to the
original signal with no PAPR reduction. It can be seen that
the algorithm works better for a lower modulation order. This
behaviour is shown in the upper bound curves as well. In
addition to Q = 100, number of subcarriers and modulation
order used in the rest of the simulations are fixed to N = 64
and 16QAM.

The performance of the algorithm for FBMC signal model
as specified in Section IV is shown in Fig. 4. Notice that the
performance is nearly identical to that of OFDM despite the
overlappings and the expected performance degradation due to
lack of control over the already transmitted segments of signal.
This observation is reported in [12] too for application of a
derandomized PAPR reduction algorithm to the FBMC signal
model. It must be mentioned that the uncoded, i.e. original,
CCDF curve of OFDM and FBMC signal models are identical.

The extension of the algorithm to multiple antennas with
independent data streams is done for OFDM signal model. The
simulation result for N = 64, 16QAM and Nt = 4 is shown
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Fig. 3. A representation of the random upper-bound on reduced PAPR by
the CCDF curves, for N = 64, estimated by generously high Q.
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Fig. 4. PAPR reduction performance of the proposed algorithm for FBMC-
OQAM signal model and single antenna, for N = 64.

in Fig. 5. It can be shown from simulations that the average
number of signs per branch for the case of N = 64, ρmin =
N/4 and ρmax = N/2 is about 22. An ordinary scheme with
this number of signs per branch would provide about 3.6 dB
reduction in effective PAPR while this strategy yields about
4.2 dB reduction. Clearly, the rate loss in the ordinary case is
lower which could make it a more appealing case. However,
the strategy is pursued mostly for further investigation of the
working of the proposed PAPR reduction method.

VII. CONCLUSION

A distortionless PAPR reduction algorithm by sign selection
which was first proposed in [8] is further investigated in two
areas. The method is applied to FBMC signal model, which
has overlapping between neighbouring signal components re-
lated to consecutive block of data symbols. As the algorithm
makes decision on sign of data symbols of a single block,
the overlapping part on the future signal segments cannot be
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Fig. 5. Dynamic sign assignment versus fixed 22 signs assigned to each
branch. for N = 64, ρmin = N/4 and ρmax = N/2 which gives an
average assigned sign per branch of about 22.

modified. Despite this complicity, it is shown by simulation
that the PAPR reduction performance is not degraded. The
second area of investigation is MIMO, specifically multiple
antennas with independent data streams. A strategy following
a similar idea to that of directed SLM (dSLM) [9] is presented
and its performance is evaluated. Although the proposed strat-
egy improves the performance, it does not add the remarkable
boost that dSLM adds to ordinary SLM.
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