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Abstract—While 1-bit analog-to-digital conversion (ADC) al-
lows to significantly reduce the analog complexity of wireless
receive systems, using the exact likelihood function of the hard-
limiting system model in order to obtain efficient algorithms in
the digital domain can make 1-bit signal processing challenging.
If the signal model before the quantizer consists of correlated
Gaussian random variables, the tail probability for a multivariate
Gaussian distribution with N dimensions (general orthant prob-
ability) is required in order to formulate the likelihood function
of the quantizer output. As a closed-form expression for the
general orthant probability is an open mathematical problem,
formulation of efficient processing methods for correlated and
quantized data and an analytical performance assessment have,
despite their high practical relevance, only found limited attention
in the literature on quantized estimation theory. Here we review
the approach of replacing the original system model by an
equivalent distribution within the exponential family. For 1-bit
signal processing, this allows to circumvent calculation of the
general orthant probability and gives access to a conservative
approximation of the receive likelihood. For the application
of blind direction-of-arrival (DOA) parameter estimation with
an array of K sensors, each performing 1-bit quantization,
we demonstrate how the exponential replacement enables to
formulate a pessimistic version of the Cramér-Rao lower bound
(CRLB) and to derive an asymptotically achieving conservative
maximum-likelihood estimator (CMLE). The 1-bit DOA perfor-
mance analysis based on the pessimistic CRLB points out that
a low-complexity radio front-end design with 1-bit ADC is in
particular suitable for blind wireless DOA estimation with a large
number of array elements operating in the medium SNR regime.

Index Terms—1-bit ADC, coarse quantization, Cramér-Rao
lower bound, DOA estimation, exponential family, Fisher infor-
mation, massive MIMO, nonlinear systems.

I. INTRODUCTION

Concerning hardware complexity and energy consumption
of signal processing systems, the circuit forming the analog-
to-digital converter (ADC) at the receiver has been identified
as a bottleneck [1]. While a high number of bits b allows
accurate representation of the analog signals in the digital
domain and therefore high processing performance, the power
dissipation and production cost of the ADC device scales
exponentially O(2b) with b. An interesting approach is to
reduce the resolution of the ADC and resort to a simple device
without feedback. In the extreme case the continuous analog
waveform at each sensor is directly converted into a binary rep-
resentation by a hard-limiter. The circuit for such an ADC can
be realized by a single comparator, making the ADC highly

efficient with respect to its hardware and energy requirements.
Further, the binary structure of the resulting receive signal
allows to perform basic signal processing operations in the
digital domain by efficient 1-bit arithmetics [2]. Therefore, 1-
bit ADC also provides a beneficial effect on the complexity
of the digital processing unit of the receive system.

Nevertheless, a serious drawback of 1-bit ADC is that a
highly nonlinear and noninvertible operation is performed on
the original analog receive signal. In comparison to an ideal
receive system with ∞-bit ADC resolution this is associated
with a significant performance loss. It is well understood that
for certain problems, i.e., location parameter estimation with
uncorrelated noise, the performance gap between a symmetric
hard-limiting 1-bit system and an ideal receiver with infinite
ADC resolution is moderate (2/π or −1.96 dB) in the low
signal-to-noise ratio (SNR) regime [3] [4]. However, important
technologies like wireless communication usually take place
in the medium SNR regime where the quantization loss is
more pronounced. In particular for such scenarios we have
identified that introducing redundancy by modification of
the analog processing prior to the ADC, allows to recover
large portions of the 1-bit loss [6]. To analyze this effect,
we have developed a compact lower bound for the Fisher
information measure [7] and recently generalized it, in order to
obtain better bounding accuracy for advanced signal parameter
estimation problems [8]. Further, we have shown that the
underlying methodology of exponential replacement leads to
an approximate formulation of the likelihood function which
can be used to formulate point estimation algorithms that
achieve the conservative inference capability of the nonlinear
stochastic system in a consistent way [8]. While in [6] we
focused on parametric location parameter estimation of a hard-
limited multivariate Gaussian variable with fixed covariance
matrix, here we center the discussion around the estimation of
a parameter modulating the covariance matrix of a zero-mean
multivariate Gaussian variable after 1-bit quantization. This
kind of estimation problem arises in wireless applications if
the direction-of-arrival (DOA) parameter of a transmit signal
with unknown structure impinging on a receive array is to be
determined. DOA parameter estimation forms a specific appli-
cation of blind covariance-based estimation and plays a key
role for technologies like wireless multi-user communication,
spectrum monitoring, jammer localization and interference
mitigation for satellite-based radio systems.



II. MOTIVATION

In order to clearly outline the estimation theoretic motiva-
tion behind the presented work, we review efficient covariance-
based estimation with infinite ADC resolution and outline the
challenges arising when treating a receiver with 1-bit ADC.

A. Ideal Receiver (∞-bit ADC)

Consider a digital receive signal y ∈ RM which is well
represented by a multivariate Gaussian random variable with
probability density function

p(y; θ) =
1

(2π)
N
2

√
det Σy(θ)

exp

(
−1

2
yTΣ−1

y (θ)y

)
(1)

with a single parameter θ ∈ Θ modulating the covariance

Σy(θ) = Ey;θ

[
yyT

]
(2)

and vanishing mean

Ey;θ [y] = 0, ∀θ. (3)

Given N independent data snapshots

Y =
[
y1 y2 . . . yN

]
∈ RM×N , (4)

the optimum asymptotically unbiased estimator θ̂(Y ) is ob-
tained by maximizing the likelihood [9]

θ̂(Y ) = arg max
θ∈Θ

ln p(Y ; θ)

= arg max
θ∈Θ

N∑
n=1

ln p(yn; θ)

= arg min
θ∈Θ

ln
(

det Σy(θ)
)

+ Tr
(
Σ̄y(Y )Σ−1

y (θ)
)
,

(5)

where the receive covariance is given by

Σ̄y(Y ) =
1

N

N∑
n=1

yny
T
n . (6)

As the maximum-likelihood estimator is consistent and effi-
cient, it is possible to characterize its asymptotic performance
in an analytical way through the Cramér-Rao lower bound [9]

EY ;θ

[(
θ − θ̂(Y )

)2] ≥ 1

NFy(θ)
, (7)

where the Fisher information is defined

Fy(θ) =

∫
Y

(
∂ ln p(y; θ)

∂θ

)2

dy. (8)

For the multivariate Gaussian model (1), we obtain [9, p. 47]

Fy(θ) =
1

2
Tr

(
Σ−1
y (θ)

∂Σy(θ)

∂θ
Σ−1
y (θ)

∂Σy(θ)

∂θ

)
. (9)

B. Low-Complexity Receiver (1-bit ADC)

The situation changes fundamentally if a nonlinear transfor-
mation

z = f(y) (10)

is involved. Then the derivation of an exact representation of
the likelihood p(z; θ), and therefore processing the data with
the maximum-likelihood approach (5), can become difficult. If
we assume 1-bit ADC and model the converters by an element-
wise hard-limiter which discards the amplitude information

z = sign (y), (11)

where the element-wise signum function is defined by

[sign (x)]n =

{
+1 if xn ≥ 0

−1 if xn < 0,
(12)

then the likelihood function for one output constellation is
found by evaluating the integral

p(z; θ) =

∫
Y(z)

p(y; θ)dy. (13)

Note, that Y(z) is the subset of Y which is mapped to
the output signal z. Computing such an integral requires the
orthant probability of a multivariate Gaussian variable (mul-
tivariate version of the Q-function). Unfortunately, a general
closed-form expression for the orthant probability is an open
mathematical problem. Only for the cases M ≤ 4 solutions
are provided in literature [10] [11]. The problem becomes
even worse, if one is interested in analytically evaluating
the estimation performance of the 1-bit receive system. The
associated Fisher information measure

Fz(θ) =

∫
Z

(
∂ ln p(z; θ)

∂θ

)2

dz

=
∑
Z

(
∂ ln p(z; θ)

∂θ

)2

(14)

is computed by summing the squared score function over the
discrete support of z. As Z contains 2M possible receive
constellations, direct computation of Fz(θ) is prohibitively
complex when M is large.

III. RELATED WORK AND OUTLINE

Due to the outlined problems (13) and (14), the literature
on analytic performance bounds and maximum-likelihood
algorithms for parametric covariance estimation with 1-bit
quantization is limited. While [5] [3] are classical references
for signal processing with 1-bit quantizer, more recently
[2] covers the problem of signal parameter estimation from
coarsely quantized data with uncorrelated noise. The work
[12] is concerned with 1-bit DOA estimation, but has to
restrict the analytical discussion to K = 2 sensors due to the
outlined problem (14) and resort to empirical methods of high
computational complexity for K > 2. In contrast [13] studies
location parameter estimation with a multivariate model and



dithered 1-bit sampling while [14] discusses inference of the
autocorrelation function from hard-limited Gaussian signals.

Here we review the approach of exponential replacement
which forms the basis for a generalized Fisher information
lower bound [8]. For the application of DOA estimation
with 1-bit quantized data this allows to derive a pessimistic
Cramèr-Rao performance bound and to analyze the achievable
estimation accuracy with an arbitrary number of sensors
K. Further, the exponential replacement enables to state a
conservative version of the maximum-likelihood estimator
which asymptotically performs equivalent to the presented
pessimistic performance bound [8].

IV. THE EXPONENTIAL REPLACEMENT

Consider an intractable parametric probabilistic model
p(z; θ). Choose the vector

φ(z) =
[
φ1(z) φ2(z) . . . φL(z)

]T
(15)

to be a set of L arbitrary transformations

φl(z) : RM → R (16)

of the output variable z and assume existence and access to
the two moments

µφ(θ) = Ez;θ [φ(z)] (17)

and

Rφ(θ) = Ez;θ

[
φ(z)φT(z)

]
− µφ(θ)µT

φ(θ). (18)

Then replace the original model p(z; θ) by an equivalent
model p̃(z; θ) within the exponential family, i.e., a model with
sufficient statistics φ(z) and equivalent moments (17) and (18)
for which the score function factorizes

∂ ln p̃(z; θ)

∂θ
= βT(θ)φ(z)− α(θ). (19)

After optimizing the weights β(θ) ∈ RL and α(θ) ∈ R it can
be shown that the Fisher information measure of the original
model p(z; θ) is in general lower bounded by [8]

Fz(θ) ≥
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ
. (20)

Further, with N independent output samples

Z =
[
z1 z2 . . . zN

]
, (21)

forming the sample mean

φ̃ =
1

N

N∑
n=1

φ(zn) (22)

and solving the equation(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

(
φ̃− µφ(θ)

)
= 0 (23)

for θ, results in a consistent estimate θ̂(Z) with asymptotic
variance equal to the inverse of N times the right-hand side
of the Fisher information bound (20) [8].

V. 1-BIT DOA ESTIMATION - SYSTEM MODEL

For the application of these results to blind DOA parameter
estimation with 1-bit ADC, we assume a uniform linear
array (ULA) with K sensors, where the spacing between the
antennas is equal to half the wavelength. With a signal source

x =
[
xI xQ

]T ∈ R2 (24)

consisting of independent zero-mean Gaussian in-phase and
quadrature components with unit covariance

Ex
[
xxT

]
= I2 (25)

and under a narrowband assumption, the unquantized receive
signal of size M = 2K

y =
[
yT
I yT

Q

]T ∈ RM , (26)

can be written in a real-valued notation [15]

y = γA(θ)x+ η, (27)

where θ is the direction under which the transmit signal x im-
pinges on the receive array. Note, that η ∈ RM is independent
zero-mean additive Gaussian noise with unit variance

Eη
[
ηηT

]
= IM . (28)

The full array steering matrix [15]

A(θ) =
[
AT
I (θ) AT

Q(θ)
]T ∈ RM×2, (29)

is modulated by the DOA parameter θ ∈ R and consists of an
in-phase steering matrix

AI(θ) =


ξ1(θ) ψ1(θ)
ξ2(θ) ψ2(θ)

...
...

ξK(θ) ψK(θ)

 ∈ RK×2 (30)

and a quadrature steering matrix

AQ(θ) =


−ψ1(θ) ξ1(θ)
−ψ2(θ) ξ2(θ)

...
...

−ψK(θ) ξK(θ)

 ∈ RK×2, (31)

with entries

ξk(θ) = cos
(
(k − 1)π sin (θ)

)
ψk(θ) = sin

(
(k − 1)π sin (θ)

)
. (32)

Therefore, the parametric covariance of the receive signal is

Ey;θ

[
yyT

]
= Σy(θ)

= γ2A(θ)AT(θ) + I2K (33)

and the 1-bit receive signal can be modeled

z = sign {y} (34)

as discussed in section II.



VI. 1-BIT DOA ESTIMATION - PERFORMANCE ANALYSIS

A. 1-bit Exponential Replacement

In order to apply the pessimistic approximation of the Fisher
information (20) for DOA estimation after 1-bit hard-limiting,
we use the auxiliary statistics

φ(z) = vech
(
zzT

)
, (35)

where vech (B) denotes the half-vectorization of the symmet-
ric matrix B, i.e., the vectorization of the lower triangular part
of B. The required mean (17) is given by

µφ(θ) = Ez;θ [φ(z)]

= Ez;θ

[
vech

(
zzT

)]
= vech

(
Ez;θ

[
zzT

])
= vech (Σz(θ)) , (36)

where by the arcsine law [16, pp. 284]

Σz(θ) =
2

π
arcsin

(
1

γ2 + 1
Σy(θ)

)
. (37)

For the derivative of the mean we find
∂µφ(θ)

∂θ
= vech

(
∂Σz(θ)

∂θ

)
, (38)

where the derivative of the quantized covariance matrix is[
∂Σz(θ)

∂θ

]
ij

=
2
[
∂Σy(θ)
∂θ

]
ij

π(γ2 + 1)
√

1− 1
(γ2+1)2 [Σy(θ)]

2
ij

(39)

with the derivative of the unquantized covariance being

∂Σy(θ)

∂θ
= γ2

(
∂A(θ)

∂θ
AT(θ) +A(θ)

∂AT(θ)

∂θ

)
. (40)

The derivative of the steering matrix is

∂A(θ)

∂θ
=
[
∂AT

I (θ)
∂θ

∂AT
Q(θ)

∂θ

]T
, (41)

with the in-phase component

∂AI(θ)

∂θ
=


∂ξ1(θ)
∂θ

∂ψ1(θ)
∂θ

∂ξ2(θ)
∂θ

∂ψ2(θ)
∂θ

...
...

∂ξK(θ)
∂θ

∂ψK(θ)
∂θ

 (42)

and a quadrature component

∂AQ(θ)

∂θ
=


−∂ψ1(θ)

∂θ
∂ξ1(θ)
∂θ

−∂ψ2(θ)
∂θ

∂ξ2(θ)
∂θ

...
...

−∂ψK(θ)
∂θ

∂ξK(θ)
∂θ

 , (43)

while the individual entries are
∂ξk(θ)

∂θ
= −(k − 1)π cos (θ) sin

(
(k − 1)π sin (θ)

)
∂ψk(θ)

∂θ
= (k − 1)π cos (θ) cos

(
(k − 1)π sin (θ)

)
. (44)

For the second moment of the auxiliary statistics (18)

E
[
φ(z)φT(z)

]
= E

[
vech

(
zzT

)
vech

(
zzT

)T]
(45)

is required. This implies to evaluate the expected value

E [zizjzkzl] , i, j, k, l ∈ {1, . . . ,M}. (46)

For the cases i = j = k = l or i = j 6= k = l, we obtain

E [zizjzkzl] = E
[
z4
i

]
= E

[
z2
i z

2
k

]
= 1. (47)

If i = j = k 6= l, the arcsine law results in

E [zizjzkzl] = E
[
z3
i zl
]

= E [zizl]

=
2

π
arcsin (ρil(θ)) , (48)

like in the case i = j 6= k 6= l, where

E [zizjzkzl] = E
[
z2
i zkzl

]
= E [zkzl]

=
2

π
arcsin (ρkl(θ)) . (49)

The case i 6= j 6= k 6= l requires special care, as

E [zizjzkzl] = Pr {zizjzkzl = 1}
− Pr {zizjzkzl = −1} (50)

involves the evaluation of the 24 = 16 orthant probabilities

Φq(Σ̄(θ)) = Pr {±zi > 0,±zj > 0,±zk > 0,±zl > 0}
(51)

of a quadrivariate Gaussian variable with correlation matrix

Σ̄(θ) =


1 ρij(θ) ρik(θ) ρil(θ)

ρij(θ) 1 ρjk(θ) ρjl(θ)
ρik(θ) ρjk(θ) 1 ρkl(θ)
ρil(θ) ρjl(θ) ρkl(θ) 1

 . (52)

A closed-form solution for this problem, requiring calculation
of four one-dimensional integrals, is given in [11].

B. 1-bit Quantization Loss

Using result (20), we can evaluate the quantization loss for
DOA parameter estimation for receivers with K > 2 in a
pessimistic manner by forming the ratio

χ(θ) =

(∂µφ(θ)

∂θ

)T
R−1
φ (θ)

∂µφ(θ)

∂θ

Fy(θ)
. (53)

In Fig. 1 we plot the performance loss (53) versus the signal-
to-noise ratio

SNR = γ2 (54)

for two different DOA setups (θ = 10◦ and θ = 70◦). It can
be observed that the quantization loss χ(θ) becomes smaller
for arrays with a larger number of antennas K. In particular,
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the array size plays a beneficial role in the SNR range of −10
to 0 dB, which is a regime of high practical relevance for
energy-efficient broadband mobile communication systems.
However, for situations where SNR > 5 dB the quantization
loss becomes pronounced. In Fig. 2 the performance loss is
depicted as a function of the DOA parameter θ for three
different array sizes (K = 2, 4, 8). It is visible that the
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Fig. 2. 1-bit DOA Estimation - Quantization Loss vs. DOA (SNR= 0 dB)

quantization loss χ(θ) becomes less dependent on the DOA
parameter θ for large arrays. Finally, in Fig. 3 the quantization
loss χ(θ) is shown for a growing number of antennas K.
For a low SNR setup (SNR = −15 dB) the gap between
the quantized receiver and the unquantized receiver vanishes
linearly with the array size K, while for a medium SNR
scenario (SNR = −3 dB) the relative performance of the 1-bit
receive system strongly improves by increasing the amount of
receive sensors K.
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Fig. 3. 1-bit DOA Estimation - Quantization Loss vs. Array Elements

C. 1-bit CMLE Algorithm

In order to demonstrate that the framework of exponential
replacement also provides a useful guideline how to achieve
the guaranteed performance

EZ;θ

[(
θ − θ̂(Z)

)2] ≈ 1

N
(
∂µφ(θ)

∂θ

)T

R−1
φ (θ)

∂µφ(θ)

∂θ

= PCRLB, (55)

in Fig. 4 we plot the accuracy (RMSE) of the conservative
maximum-likelihood estimation (CMLE) algorithm (23) for an
array size of K = 4, a DOA parameter θ = 5◦ and N = 1000
samples averaged over 10000 runs. It can be observed that the
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Fig. 4. 1-bit DOA Estimation - CMLE Performance (K = 4, θ = 5◦)

CMLE performs close to the pessimistic version of the CRLB.



VII. CONCLUSION

We have discussed the method of exponential replacement
[8] in the context of 1-bit DOA estimation with a single
signal source and a receive array of K sensors. The associated
pessimistic approximation for the Fisher information measure
allows to analyze the achievable DOA estimation accuracy for
arrays with K > 2 in a conservative manner. Additionally, the
framework provides a guideline how to achieve the accuracy
guaranteed by the pessimistic CRLB. The performance analy-
sis shows that in the medium SNR regime DOA estimation
with 1-bit ADC can be performed at high accuracy if the
number of array elements K is large. This result supports
the current discussion on future wireless systems which use
a large number of low-complexity sensors, i.e., 1-bit massive
MIMO communication systems [17] [18].
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