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Abstract—We study the optimization of the data rate achiev-
able with partial decode-and-forward in the Gaussian MIMO
relay channel and propose a new algorithm to find close-to-
optimal input covariance matrices. Although the optimization
is a non-convex problem in its original formulation, we can show
that a reformulated version with slightly modified constraint set
is convex. In particular, we replace a positive-semidefiniteness
constraint by a strict positive-definiteness constraint. This may
introduce an inaccuracy, but we conjecture this inaccuracy to
be small so that the obtained solutions are close to the globally
optimal ones.

I. INTRODUCTION

The concept of relay networks was introduced by [1] and
is of great interest in recent research as the usage of a
relay can increase the achievable data rate compared to direct
transmission. However, neither the capacity of a relay channel
nor the optimal strategy of the relay are known so far. In [2],
several strategies such as decode-and-forward and compress-
and-forward were proposed. Moreover, the authors of [2]
derived the so-called cut-set bound (CSB), which is an upper
bound to the capacity.

These general results were later transfered to the case of
a Gaussian MIMO relay channel, where all terminals are
equipped with multiple antennas, and where additive Gaussian
noise is assumed at each receive antenna. In particular, it was
shown in [3] that both the CSB and the decode-and-forward
rate are maximized by Gaussian channel inputs, and it was
shown in [4], [5] that the optimal input covariance matrices
can be obtained by solving a convex program.

In this work, we consider the partial decode-and-foward
(PDF) scheme (e.g., [6, Section 16.6], [7, Section 9.4.1],
[8]–[10]). This extension of decode-and-forward belongs to
a wider class of transmit strategies proposed in [2], where the
relay decodes only a part of the source message and applies
compress-and-forward to the other part. In the special case
of PDF, which was first employed in [8], the second part is
simply ignored by the relay (i.e., it is compressed to a constant
value zero). Compared to classical decode-and-forward, PDF
can achieve a higher data rate, especially if the source-relay
link is the limiting factor [9], [7, Section 9.4.1]. However, PDF
is more difficult to analyze and to optimize due to the second
part of the source signal, which acts as an interfering signal
at the relay.

The first application of PDF in a Gaussian MIMO relay
channel can be found in [10] under the name transmit-
side message splitting. Later, it was shown that circularly

symmetric Gaussian signals are the optimal input distribution
[11], [12] also for this transmit strategy. However, the problem
of finding the optimal input covariance matrices is more
involved than in the case of decode-and-forward since the
mutual information expression becomes non-concave due to
the interference at the relay.

The recent works [13], [14] establish upper bounds on the
difference between the CSB and the rate achievable by PDF. In
addition to such theoretical results, it would also be interesting
to study this difference from a numerical perspective to see
how small the gap can become in various scenarios if the
optimal input covariances are used for PDF. However, there are
only suboptimal approaches to maximize the achievable PDF
rate (e.g., [15], [16]) and solutions for special cases (e.g., [17]),
but there is still no way to find the optimal transmit covariance
matrices for the PDF scheme in the general case. Thus, it is
not clear whether the observed gap between existing solution
methods and the CSB is due to the suboptimal choice of the
covariance matrices or rather inherent to the PDF scheme. To
answer this question, a globally optimal solution of the PDF
rate maximization is needed.

In this work, we take an important step towards finding
such a globally optimal solution. We decompose the non-
convex PDF rate maximization into an outer optimization
over a so-called innovation covariance matrix C (cf. [12])
and an inner problem to optimize the remaining parameters
for a fixed innovation covariance matrix. By restricting the
innovation covariance matrix to be strictly positive-definite
(i.e., all eigenvalues have to be greater than or equal to a
small positive constant ε instead of being greater than or
equal to zero), we obtain an approximated problem, for which
we can show that both the inner and outer problems can be
solved in a globally optimal manner by means of convex
programming. Even though the approximation introduces an
inaccuracy in scenarios where the optimal distribution requires
a rank-deficient innovation covariance matrix, we conjecture
the error to be small when choosing a sufficiently small ε.

To obtain a convex reformulation of the rate optimization,
we exploit a result from [12] which shows that an arising
subproblem is mathematically equivalent to the maximization
of the sum rate with dirty paper coding [18], [19] in a
broadcast channel (BC) under a shaping constraint based on
the innovation covariance matrix. This BC problem can be
transformed into a convex minimax problem in a dual multiple
access channel (MAC) [20], [21].



After introducing the system model and the problem formu-
lation in Section II, we give the details of the proposed refor-
mulation in Section III. Therein, we also study the properties
of the objective function of the outer problem and show that
we can obtain a convex program after a slight modification of
the constraint set. In Section IV, we propose a transformation
of the inner problem to a simplified equivalent problem, which
can then be solved via the dual MAC. After introducing these
reformulations and studying the properties of the outer and
the inner problem, we turn our attention to the algorithmic
aspects in Section V. For the outer problem of finding the
optimal innovation covariance matrix, we derive a solution
method based on the cutting plane algorithm [22, Section
6.3.3]. The inner problem can be tackled by an alternating
gradient-projection method (cf., e.g., [23]). Finally, we discuss
the obtained solutions in comparison to an existing suboptimal
approach by means of a numerical simulation in Section VI.

Notation: We use I for the identity matrix of appropri-
ate size. The order relations � and � have to be under-
stood in the sense of positive-semidefiniteness and positive-
definiteness, respectively. We use the shorthand notation
(•k)∀k for (•1, . . . , •K). The set HN is the space of Hermitian
matrices of size N ×N .

II. SYSTEM MODEL

The Gaussian MIMO relay channel consists of a source S
with NS transmit antennas, a destination D with ND receive
antennas, and a relay R with NR antennas. The source trans-
mits data to the destination over a direct channel and with the
help of the relay. The channel matrices of the links source-
destination, source-relay, and relay-destination are given by
HSD ∈ CND×NS , HSR ∈ CNR×NS , and HRD ∈ CND×NR ,
respectively. We assume perfect channel knowledge as well
as full-duplex transmission with perfect self-interference can-
cellation at the relay.

A. Partial Decode-and-Forward

Using the partial decode-and-forward strategy (e.g., [7,
Section 9.4.1]), the transmit signal xS of the source is a
superposition of two independent parts u and v, where u
denotes the part that is sent in cooperation with the relay, and
v denotes the part that is directly transmitted without the help
of the relay and causes interference at the relay. As proposed
in [12], the cooperative part u can be further decomposed into
a part q being independent of the relay transmit signal xR and
a part z being linearly dependent on the relay transmit signal:

xS = u+ v = AxR + q + v = z + q + v. (1)

As z has linear dependence on the relay transmit signal,
and the relay can, due to causality, only transmit data it has
previously received,1 z does not contain new information.
The remaining parts q and v, which contain new informa-
tion, are then called innovation, and the covariance matrix
C = Cv +Cq is called innovation covariance matrix [12],

1Note that the rate expressions given in Section II-B are achievable using
a block-Markov coding scheme [7, Section 9.4.1].

where Cv and Cq denote the covariance matrices of v and q,
respectively.

B. Achievable Data Rates

The achievable data rate with the partial decode-and-
forward scheme and circularly symmetric Gaussian signals is
given as the minimum of two mutual information expressions

R = min{RA, RB} (2)

[7, Section 9.4.1], where RA and RB can be expressed as [12]

RA = log2 det(IND +HSDCvH
H
SD)

+ log2

det(INR +HSR(Cv +Cq)HH
SR)

det(INR +HSRCvHH
SR)

(3)

RB = log2 det(IND +HSD(Cv +Cq)HH
SD +HRHH). (4)

We have assumed the noise covariances CηR = INR and
CηD = IND w.l.o.g., and we use the joint channel matrix

H =
[
HSD HRD

]
. (5)

The joint covariance matrix of z and xR is denoted by

R = C[ zxR] = E

[[
z
xR

] [
z
xR

]H
]
. (6)

C. Problem Formulation

We aim at maximizing the achievable data rate under
constraints on the transmit powers of the source and of the
relay. The power constraints can be formulated as

E
[
‖xS‖22

]
= tr(Cv +Cq +DSRD

H
S ) ≤ PS (7)

E
[
‖xR‖22

]
= tr(DRRD

H
R ) ≤ PR (8)

with the selection matrices

DS =
[
INS 0NS×NR

]
and DR =

[
0NR×NS INR

]
. (9)

The optimization problem we consider is then given by

max
Cv�0,Cq�0

R�0

min {RA(Cv,Cq), RB(Cv,Cq,R)}

s. t. tr(Cv +Cq) + tr(DSRD
H
S ) ≤ PS

tr(DRRD
H
R ) ≤ PR (10)

In (1), we have assumed that z and xR are fully correlated
so that z can be expressed as AxR. This would impose an
additional structural constraint on the joint covariance matrix
R of z and xR. However, this constraint can be neglected
since it is automatically fulfilled in the optimum, which can
be seen as follows. Assume that we have

R = E

[[
AxR
xR

] [
AxR
xR

]H
]

︸ ︷︷ ︸
R′

+

[
B 0
0 0

]
(11)

with B � 0. Then, we could replace R by R′ and Cq by
C ′q = Cq +B. By doing so, the left side of the constraints
as well as the rate RB would be left unchanged (to see this,



note the definition of H in (5)), and the rate RA would be
increased or left unchanged.

As already mentioned before, our approach is based on
restricting the optimization to cases where the innovation co-
variance C = Cv+Cq is strictly positive-definite. Therefore,
we will later consider a slightly modified problem with the
additional constraint Cv + Cq � εI for a given small value
of ε.

III. PRIMAL DECOMPOSITION

The optimization problem (10) is non-convex in its original
form. However, we can reformulate the problem and show the
reformulated version to be convex, as long as the innovation
covariance matrix is strictly positive-definite. To do so, we
apply the concept of primal decomposition [24] to (10) with
the innovation covariance matrix C and the matrix R as
coupling variables. A similar approach was pursued in [12] as
part of a proof, but has not yet been considered for algorithm
design. We obtain the optimization problem

max
C�0,R�0

min {R?A(C), RB(C,R)}

s. t. tr(C) + tr(DSRD
H
S ) ≤ PS

tr(DRRD
H
R ) ≤ PR (12)

with

R?A(C) = max
Cv�0,Cq�0

RA s. t. Cv +Cq � C (13)

and

RB(C,R) = log2 det(IND +HSDCH
H
SD +HRHH). (14)

Due to the max-min-inequality, the reformulation (12) is an
upper bound to the original problem (10), but the bound is
tight [12] since RB is no longer a function of Cv and Cq if
C is given, i.e., the inner optimization over Cv and Cq is
only needed for RA.

Note that the problem (13) for given C is mathematically
equivalent to maximizing the sum rate in a two-user MIMO
broadcast channel with dirty paper coding [18], [19] under a
shaping constraint. In particular, the right side of the shaping
constraint is determined by the innovation covariance matrix
(cf. [12]), and we have identity matrices as noise covariance
matrices at the receivers, i.e.,

max
(Qk�0)∀k∑

kQk�C

K∑
k=1

log2

det
(
I +

∑K
i=kHkQiH

H
k

)
det
(
I +

∑K
i=k+1HkQiHH

k

) (15)

with K = 2. This mathematical equivalence to an optimization
in a MIMO broadcast channel cannot only be exploited to
evaluate R?A for given C (see next section), but also to prove
the following theorem.

A. Properties of R?A
Theorem 1. For a strictly positive-definite innovation co-
variance matrix C, the expression R?A(C) from (13) is con-
cave in C, and a (concave) subgradient is given by the
optimal Lagrangian multiplier Ω for the shaping constraint
Cv +Cq � C.

Proof: In the following, we perform a so-called sensitivity
analysis [25, Section 5.6], which was already done in [26] for
a sum rate maximization under a power constraint. We extend
this approach to the sum rate maximization with a shaping
constraint.

As a first step, we express R?A(C) from (13) by its La-
grangian dual function:

R?A(C) = min
Ω�0

max
Cv�0,Cq�0

RA + tr (Ω(C − (Cv +Cq)))

(16)

Equality in (16) holds for a full-rank innovation covariance
C as R?A is mathematically equivalent to the BC sum rate
maximization with a shaping constraint (15), which has a zero
duality gap provided that the shaping matrix at the right side
of the shaping constraint has full rank [20].

The optimal value of the minimization in (16) can be
bounded from above by

R?A(C) ≤ max
Cv�0,Cq�0

RA+ tr
(
Ω̃ (C − (Cv +Cq))

)
(17)

= max
Cv�0,Cq�0

RA+ tr
(
Ω̃
(
C̃ − (Cv +Cq)

))
+ tr

(
Ω̃
(
C − C̃

))
(18)

where (17) is valid for all Ω̃ � 0, and (18) arises from (17)
by adding and substracting the term tr(Ω̃C̃) for a C̃ � 0.

Since (17) holds for all Ω̃ � 0, it is also valid if the
matrix Ω̃ is chosen as the optimal Lagrangian multiplier
corresponding to the shaping constraint Cv +Cq � C̃. Thus,
(18) can be expressed as

R?A(C) ≤ R?A(C̃) +
〈
Ω̃,C − C̃

〉
︸ ︷︷ ︸

R̂?
A(C;C̃)

(19)

and we can identify Ω̃ to be a (concave) subgradient of R?A(C̃)
for a strictly positive-definite C̃. Additionally, since R?A(C)
can be bounded from above by the linear approximation
R̂?A(C; C̃) around any C̃ � 0, the expression R?A(C) is
concave in C for strictly positive-definite C.

Remark: If C is not strictly positive-definite, but has also
eigenvalues that are zero, the proof from [20] for the zero
duality gap in (16) does not hold. Thus, we cannot extend the
proof presented above to a rank-deficient positive-semidefinite
C.

B. Properties of RB

A similar result can be obtained for RB(C,R). As
log det(X) is concave and differentiable in X [25, Section
3.1.5], the rate expression RB(C,R) is jointly concave in



C and R, and the gradient matrices ∂RB
∂CT and ∂RB

∂RT form a
(concave) subgradient. Thus, a linear approximation of RB
around (C̃, R̃) is given by

RB(C,R) ≤ R̂B(C,R; C̃, R̃) (20)

= RB(C̃, R̃) +
〈
∂RB
∂CT

∣∣
C̃
, C − C̃

〉
+
〈
∂RB
∂RT

∣∣
R̃
, R− R̃

〉
(21)

where the gradient matrices ∂RB
∂CT and ∂RB

∂RT are given by

∂RB

∂CT
=

1

ln 2
HH

SDD
−1HSD (22)

∂RB

∂RT
=

1

ln 2
HHD−1H (23)

with

D = IND +HSDCH
H
SD +HRHH. (24)

C. Modified Optimization Problem
Due to the restriction to a strictly positive-definite innova-

tion covariance matrix C, we slightly modify the decomposed
optimization problem (12) and introduce the additional con-
straint C � εI. This leads to the following problem.

max
C�εI,R�0

min {R?A(C), RB(C,R)}

s. t. tr(C) + tr(DSRD
H
S ) ≤ PS

tr(DRRD
H
R ) ≤ PR. (25)

Although this modification may lead to a suboptimal solution
in the case where the optimal solution of the original problem
has a rank-deficient C, we conjecture the error we make by
introducing the additional constraint C � εI to be small
for sufficiently small ε. However, the following important
corollary holds for (25).

Corollary 1. The modified optimization problem (25) is a
convex program.

Proof: The pointwise minimum of concave functions is
concave [25, Section 3.2.3], RB is jointly concave in C and
R, and R?A is concave for C � εI, cf. Theorem 1

IV. INNER PROBLEM: BROADCAST SUM RATE
MAXIMIZATION WITH SHAPING CONSTRAINT

What remains to be done is solving the inner problem of
evaluating R?A for fixed C, which is mathematically equivalent
to a sum rate maximization in the broadcast channel. Although
the broadcast sum rate maximization (13) is a non-convex
problem, it can be solved by transforming it into a convex
minimax problem in the dual multiple access channel.

In the first part of this section, we apply the duality
framework presented in [20], [21] to obtain a convex problem
in the multiple access channel for a BC sum rate maximization
problem under a shaping constraint with C = I and regular
channels. In the second part, we extend this to a general
full-rank matrix C and to rank-deficient channel matrices by
introducing an appropriate transformation. Finally, we discuss
why the results cannot be easily extended to the case of a
rank-deficient C.

A. MAC-BC-Duality

The classical uplink downlink duality from [18] only holds
under a sum power constraint. Therefore, we make instead use
of the duality framework from [20], [21], which can handle
problems in the form

min
(Cηk�0)∀k

(Cηk )∀k ∈Y⊥∑
k tr(BkCηk )=σ2

max
(Qk�0)∀k

Z ∈Z∑
kQk�C+Z

RBC((Qk,Cηk
)∀k; (Hk)∀k) (26)

with

RBC =

K∑
k=1

log2

det
(
Cηk

+
∑K
i=kHkQiH

H
k

)
det
(
Cηk

+
∑K
i=k+1HkQiHH

k

) (27)

denoting the BC sum rate depending on the transmit covari-
ance matrices (Qk)∀k, the noise covariances (Cηk

)∀k at the
BC receivers, and the channel matrices (Hk)∀k. The number
of users is denoted by K and quantities with an index k refer
to quantities of the k-th user. The linear subsets Z ⊆ HN
and Y ⊆ HM1 × · · · × HMK can be used to model specific
constraints. Here, N refers to the number of antennas at the
base station and Mk to the number of antennas at the k-th
receiver.

The corresponding uplink problem achieving the same sum
rate is given by

min
Cη�0
Cη∈Z⊥

tr(CCη)=σ2

max
(Σk�0)∀k

(Yk)∀k ∈Y
Σk�Bk+Yk ∀k

RMAC((Σk)∀k,Cη; (Hk)∀k) (28)

with

RMAC = log2

det
(
Cη +

∑K
k=1H

H
k ΣkHk

)
det (Cη)

(29)

denoting the sum rate of the dual multiple access channel
depending on the transmit covariance matrices (Σk)∀k of the
users, the noise covariance matrix Cη at the base station, and
the channel matrices (Hk)∀k of the original broadcast channel.
Note that (29) is convex in Cη and concave in (Σk)∀k [21].

For the purpose of evaluating R?A(C) in (13), we are only
interested in the case Cη1

= Cη2
= I. Therefore, we omit

the variables Cηk
of the function RBC((Qk,Cηk

)∀k; (Hk)∀k)
from now on. The broadcast sum rate maximization problem
with a shaping constraint is then given by

max
(Qk�0)∀k

RBC((Qk)∀k; (Hk)∀k) s.t.
K∑
k=1

Qk � C (30)

where K = 2. If we in addition assume C = I, the application
of the duality framework leads to the dual uplink problem

min
Cη�0

tr(Cη)=P

max
(Σk�0)∀k∑
k tr(Σk)=P

RMAC((Σk)∀k,Cη; (Hk)∀k) (31)

where both the transmit covariance matrices and the noise
covariance matrix are subject to a power constraint with
P = ND +NR [21].



B. General Shaping Constraint and Rank-Deficient Channels

In order to handle general shaping constraints with a full-
rank matrix C 6= I, we perform a transformation of the broad-
cast problem in the following and include the matrixC into the
channel matrices. Furthermore, we perform transformations to
eliminate row rank deficiencies of the channels (Hk)∀k and to
eliminate column rank deficiencies of the joint channel matrix[
HT

1 , H
T
2 , . . . ,H

T
K

]T
.

While eliminating row rank deficiencies just reduces the di-
mensionality of the expressions, the elimination of the column
rank deficiencies is crucial for the algorithm that is applied
to solve (31). The reason for this is that a rank-deficient joint
channel matrix would lead to a rank-deficient noise covariance
matrix in the dual MAC.

In the following, we use Λk to denote the Lagrangian
multiplier for the constraint Qk � 0 in (30), and Ω is the
Lagrangian multiplier for the shaping constraint

∑
kQk � C.

Proposition 1. Let Cηk
= I ∀k, and C = C

1
2C

H
2 � 0 with

square C
1
2 . Furthermore, let[
Uk U⊥k

] [Sk
0

]
V H
k = HkC

1
2 ∀k (32)

and

U

[
S

0

] [
V V ⊥

]H
=

UH
1 H1C

1
2

. . .

UH
KHKC

1
2

 (33)

be singular value decompositions where (Sk)∀k and S have
full rank. Then, the optimum of (30) can be found by solving
a transformed problem

max
(Q′

k�0)∀k

RBC((Q′k)∀k); (H ′k)∀k) s.t.
K∑
k=1

Q′k � I (34)

with channels

H ′k = UH
k HkC

1
2V . (35)

In particular, the optimal primal and dual variables of (30)
are given by

Qk = C
1
2V Q′kV

HC
H
2 ∀k (36)

Λk = C−
H
2 V Λ′kV

HC−
1
2 ∀k (37)

Ω = C−
H
2 V Ω′V HC−

1
2 (38)

where (Q′k)∀k, (Λ′k)∀k and Ω′ are the optimal primal and
dual variables of (34).

Proof: See Appendix A

C. Rank-Deficient Shaping Matrix

So far, all derivations have been based on the assumption
that C has full rank. For instance, a matrix inversion C−

1
2

is performed in the transformation rule (38), and it is also
required at some points in the proof of Proposition 1 that C
is invertible. For this reason, the case of a singular matrix C
is explicitly excluded in Theorem 1. However, we now want

to discuss whether the approach can be extended to a singular
matrix C.

If C has eigenvalues equal to zero, the corresponding
eigenvectors can be interpreted as forbidden directions in
which no signal power can be used. This leads to the following
result.

Proposition 2. Let[
W1 W2

] [Ψ 0
0 0

] [
WH

1

WH
2

]
= C (39)

be the eigenvalue decomposition of C with a full-rank diag-
onal matrix Ψ . Then, (30) has the same optimal value as a
transformed problem

max
(Q̄k�0)∀k

RBC((Q̄k)∀k); (H̄k)∀k) s.t.
K∑
k=1

Q̄k � Ψ (40)

with channels (H̄k = HkW1)∀k and shaping matrix Ψ . The
covariance matrices

Qk = W1Q̄kW
H
1 ∀k (41)

are optimizers of the original problem (30) if and only if the
matrices (Q̄k)∀k are optimizers of the transformed problem.

Proof: The transformation cuts away the dimensions of
C with eigenvalues equal to zero. In these forbidden dimen-
sions, the transmit covariance matrices are forced to zero, as
0 �

∑
kQk � C. Thus, we can perform the optimization

only in the remaining dimensions, and we can then construct
a solution of the original problem by filling up the forbidden
dimensions with zero power.

This means that we can solve the optimization (40) by
means of Proposition 1 and obtain a solution to (30) with
rank-deficient C by using the transformation in (41). A similar
result can be found in [20]. Therein, the authors do not further
study the original problem with rank-deficient C, but they
only point out that the transformed problem (40), which has
the same optimal value, can be solved instead.

However, this point of view does not help for our purpose
since for the linear approximation (19), we need the zero-
duality gap property and the numerical value of the optimal
dual variable Ω. From just knowing the primal solution,
neither of them can be obtained. At the first glance, we might
think that the only missing element is a transformation that
allows us to construct a dual solution of (30) from a dual
solution of (40), but in fact, this is not true. It turns out that
the problem is much more fundamental.

In the forbidden directions, the combination of inequalities
Qk � 0 ∀k and

∑
kQk � C corresponds to an equality

constraint that forces the corresponding eigenvalues of the
matrices Qk to zero. This means that the constraint set
does not have a non-empty interior. As a result, Slater’s
constraint qualifications are not fulfilled (see, e.g., [27, Ch. 5],
or [28, Ch. 1] for the corresponding concept in semidefinite
programming), and the KKT conditions might not even be
necessary conditions for an optimum.



This conclusion can be supported by numerical evidence as
follows. If the primal solution is known, it is usually possible
to find the corresponding dual variables by a convex feasibility
problem where the constraints are the KKT conditions with the
primal solution plugged in. To avoid numerical problems, this
feasibility test can instead be formulated as a distance min-
imization whose optimal value is zero apart from numerical
inaccuracies. However, in our experiments, we came across
many cases in which it was not possible to find a solution
with a distance close to zero. This indicates that the optimum
of the original problem can indeed be attained at a point which
does not fulfill the KKT conditions.

As a result, there does not seem to be an obvious way to
extend Theorem 1 to points where C is singular, and we leave
this question open for future research. If such an extension
could be found, the overall method proposed in this paper
would become a globally optimal solution to the PDF rate
maximization problem.

V. PROPOSED ALGORITHM

In this section, we give the details of the proposed algorith-
mic solutions for both the outer problem (25) and the inner
problem (13).

A. Outer Problem

For finding the optimal C and R in (25), we use the cutting
plane algorithm [22, Section 6.3.3]. The algorithm succes-
sively refines linear approximations of a concave function. To
apply the algorithm, we reformulate (25) as follows:

max
(C,R)∈P

z s.t. z ≤ R?A(C), z ≤ RB(C,R) (42)

with

P =
{

(C � εI,R � 0) : tr(C) + tr(DSRD
H
S ) ≤ PS

∧ tr(DRRD
H
R ) ≤ PR

}
. (43)

The optimal value of this problem can be bounded from above
by replacing R?A(C) and RB(C,R) in the constraints of (42)
by their linear approximations (19) and (21) around a finite
number of points, which leads to

max
(C,R)∈P

z s.t. z ≤ R̂?A(C; C̃)

z ≤ R̂B(C,R; C̃, R̃)

}
∀(C̃, R̃) ∈ P̄ (44)

where P̄ ⊆ P is the set of points around which the lineariza-
tions are performed. The cutting plane algorithm is initialized
with an initial set P̄ with a small number of elements, and
(44) is solved. The optimal solution (C?,R?) is then added
to P̄ and the optimization problem (44) is solved again. This
procedure is repeated until the desired accuracy is reached.

B. Inner Problem

To solve the subproblem of evaluating R?A(C) from (13), we
first perform the transformation from Proposition 1 and then
solve the dual MAC problem (31) of the transformed problem.
For this, we use an alternating gradient projection algorithm
as proposed by [23]. This means, we perform gradient steps
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Fig. 1. Histogram of rate gain over IAA [15] for NS = NR = ND = 2,
PS = 100, PR = 10, d = 0.8 and ε = 10−5PS.

and projections onto the constraint set for the inner rate
maximization and for the worst-case noise optimization in an
alternating manner until convergence.

Furthermore, solving the dual MAC problem does not
only lead to the optimal transmit covariance matrices, but
also directly gives the Lagrangian multiplier for the shaping
constraint Cv +Cq � C:

Ω = µC?
η (45)

where C?
η is the optimal worst-case noise from (31) and

µ is the Lagrangian multiplier corresponding to the power
constraint tr(Cη) ≤ P [20]. The Lagrangian multiplier matrix
Ω is needed to compute the linear approximation of R?A(C)
as given in (19).

VI. RESULTS AND CONCLUSION

To evaluate the performance of the proposed algorithm, we
compare the results to the inner approximation approach (IAA)
from [15] and to the cut-set bound. As in [15], we assume a
line network, where the relay lies on a line between source and
destination. The distances source-relay, relay-destination, and
source-destination are given by dSR = d, d ∈ (0, 1), dRD =
1 − d, and dSD = 1, respectively. The channel matrices are
given byHAB = d

−γ/2
AB H̃AB with γ = 4 and A,B ∈ {S,R,D}.

The individual elements of each H̃AB are independent and
circularly symmetric complex Gaussian distributed with zero
mean and unit variance.

The histogram in Figure 1 shows the difference Rproposed −
RIAA for 200 i.i.d. channel realizations with two antennas at
each terminal and distance parameter d = 0.8. It can be seen
that the IAA and the proposed algorithm converge to the same
value in many cases. However, there are also cases in which
the proposed algorithm achieves a higher rate, meaning that the
solution found by the IAA method is not the global optimum in
these cases. Figure 2 shows the results for the same scenario
with various values of d. By using the proposed method as
a benchmark, we can conclude that the IAA has a close-to-
optimal performance on average, which had not been clear in
the first place since the IAA is only a local method. On the
other hand, we can observe that the gap to the cut-set bound
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(as seen in Figure 2 for d ≥ 0.5) cannot be closed with the
proposed algorithm.

Unlike existing suboptimal approaches to solve the PDF
rate maximization problem, the proposed algorithm is not a
local approach. Instead, we solve a slightly modified problem
in a globally optimal manner. Thus, the proposed algorithm
finds the globally optimal solution in cases where the optimal
innovation covariance matrix has full rank, and we conjecture
that it finds a close-to-optimal solution in the other cases
if a sufficiently small ε is chosen. If this conjecture holds,
the results reveal that the gap to the cut-set bound in Figure
2 is not due to the potentially suboptimal choice of the
covariance matrices in existing algorithms, but inherent to the
PDF scheme or inherent to the fact that the CSB might not be
a tight bound to the capacity of the relay channel in general.

To settle this conjecture, it should be studied in future
research whether Theorem 1 can be extended to the rank-
deficient case in order to derive a method to find the globally
optimal PDF rate without the approximation used in this paper.

APPENDIX A

Proof of Proposition 1: Since C and
[
V V ⊥

]
are

invertible by assumption, any feasible Qk can be parametrized
by

Qk = C
1
2

[
V V ⊥

] [Q′k Xk

Yk Zk

] [
V V ⊥

]H
C

H
2 . (46)

Note that HkC
1
2V ⊥ = 0 ∀k by construction, and that

only products of the form HkQiH
H
k are relevant for the

objective function RBC given in (27). Therefore, we can
restrict ourselves to the case where Xk = 0, Yk = 0, and
Zk = 0. This means that we can use the parameterization
Qk = C

1
2V Q′kV

HC
H
2 without loss of generality.

Moreover, we have UkUH
k Hk = Hk ∀k by construction.

Using this equality in combination with det(I + AB) =

det(I +BA) [29], we obtain

RBC =

K∑
k=1

log2

det
(
I +

∑K
i=kU

H
k HkC

1
2V Q′iV

HC
H
2HH

k Uk

)
det
(
I +

∑K
i=k+1U

H
k HkC

1
2V Q′iV

HC
H
2HH

k Uk

) . (47)

We can identify this as the sum rate RBC((Q′k)∀k; (H ′k)∀k)
in a broadcast channel with channel matrices H ′k =
UH
k HkC

1
2V and transmit covariance matrices Q′k.

In the following, we use A � B ⇒ SASH � SBSH

for Hermitian A and B [29, Section 7.7] to reformulate the
constraints of (30). Obviously, we have Qk � 0 if Q′k � 0.
On the other hand, due to V HV = I, we can choose S =
V HC−

1
2 to show that Q′k = SQkS

H � 0 if Qk � 0.
If
∑
kQ
′
k � I, we have

∑
k V Q

′
kV

H � V V H � I since
each eigenvalue of a projector V V H is either 1 or 0 [29].
Thus,

∑
kQk =

∑
kC

1
2V Q′kV

HC
H
2 � C if

∑
kQ
′
k � I.

On the other hand, we can again use S = V HC−
1
2 to show

that
∑
kQ
′
k =

∑
k SQkS

H � SCSH = I if
∑
kQk � C.

We have shown that we can find an optimum of
(30) by instead solving (34). It remains to be shown
that ((Qk)∀k, (Λk)∀k,Ω) is a KKT point of (30) if
((Q′k)∀k, (Λ

′
k)∀k,Ω

′) is a KKT point of (34).2

Similar as above, it is easy to see that Λ′k � 0 ⇒ Λk � 0
and Ω′ � 0 ⇒ Ω � 0. Due to tr(AB) = tr(BA), the
complementary slackness condition tr(ΛkQk) = 0 ∀k is ful-
filled if tr(Λ′kQ

′
k) = 0 ∀k is fulfilled. Similarly, we find that

tr (Ω′ (I−
∑
kQ
′
k)) = 0 implies tr (Ω (C −

∑
kQk)) = 0.

Since RBC((Q′k)∀k; (H ′k)∀k) = RBC((Q′k)∀k; (UkH
′
k)∀k),

we can base the following considerations on H̃ = UkH
′
k =

HkC
1
2V instead of on H ′k for the sake of simplicity. The

derivative of the objective function is given by

∂RBC((Q′k)∀k; (H̃k)∀k)

∂Q′Tk
=

1

ln 2

[( k∑
i=1

H̃H
i

(
I + H̃i

K∑
j=i

Q′jH̃
H
i

)−1
H̃i

)
−
( k−1∑
i=1

H̃H
i

(
I + H̃i

K∑
j=i+1

Q′jH̃
H
i

)−1
H̃i

)]
. (48)

Since HkQiH
H
k = H̃kQ

′
iH̃

H
k for any k and i, we have that

∂RBC((Q′k)∀k; (H̃k)∀k)

∂Q′Tk

= V HC
H
2
∂RBC((Qk)∀k; (Hk)∀k)

∂QT
k

C
1
2V . (49)

2Note that the problem has a non-empty interior, so that Slater’s constraint
qualifications are fulfilled (see, e.g., [27, Ch. 5], or [28, Ch. 1] for the cor-
responding concept in semidefinite programming). Thus, the KKT conditions
are necessary for optimality.



By exploiting that HkC
1
2V ⊥ = 0 ∀k, i.e., HkC

1
2V V H =

HkC
1
2 , we get

C−
H
2 V

∂RBC((Q′k)∀k; (H̃k)∀k)

∂Q′Tk
V HC−

1
2

=
∂RBC((Qk)∀k; (Hk)∀k)

∂QT
k

. (50)

Therefore, the stationarity condition

∂RBC((Qk)∀k; (Hk)∀k)

∂QT
k

+Λk −Ω = 0 ∀k (51)

of (30) is fulfilled by Λk and Ω from (37) and (38) if the
corresponding condition of the transformed problem (34) is
fulfilled.
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