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Abstract—We consider joint channel-and-data estimation for
quantized massive MIMO systems. The estimation for both parts
follows a turbo-like fashion, where the estimation error of one
step is treated as additive Gaussian noise for the other. An
approximate belief propagation algorithm is employed to obtain
an approximate minimum mean square error estimate of both the
data and channel. The performance of our scheme is compared
to a Bayes optimal joint channel-and-data estimation approach
by Wen et al. (2015). We observe that 10 turbo iterations are
enough to achieve similar performance with lower complexity.

I. INTRODUCTION

To address the explosively growing demand for faster data
rates and increased energy efficiency, wireless communications
faces a trend towards using a very large number (100 or
more) antennas at the base station to simultaneously ac-
commodate many users. This idea is commonly known as
Massive MIMO [1]–[3]. However, there is still skepticism
about the practicality of such systems; increasing both the
number of antennas and the bandwidth by an order of
magnitude for millimeter wave systems [4], [5] requires an
enormous investment in hardware, particularly if a separate
radio frequency chain is used for each antenna. The analog-
to-digital converters (ADCs) and digital-to-analog converters
(DACs) must be extremely high-speed to handle the large
bandwidths in the millimeter wave range. High-precision
ADCs/DACs operating at gigasample-per-second rates have
an extremely high fabrication cost and energy consumption
which contradicts their employment in such situations. Low
resolution ADCs and DACs, even down to a single bit of
resolution, have therefore gained a lot of interest in the massive
MIMO literature recently: Bounds on the capacity of quantized
channels have been derived in [6]. In [7], the authors consider
the problem of detection and channel estimation using linear
methods based on least-squares, matched filtering and zero-
forcing. They also formulate the maximum-likelihood (ML)
detection problem, but do not solve it due to its claimed
NP-hardness. The authors of [8] come up with a relaxed
ML formulation that can be used for both data and channel
detection. The work of [9] considers the possibility of using
larger constellations and characterizes the tradeoff between the
length of the pilot sequence and the channel coherence time for
a pilot-only scheme. Joint channel-and-data (JCD) estimation
for quantized massive MIMO systems is considered in [10],
where the authors employ an adapted version of bilinear
generalized approximate message passing (biGAMP) [11].
They characterize important system parameters (bit-error rate
(BER), mean-squared error (MSE)) in the asymptotic limit

of a large system analysis. In this work, we also investigate
the joint channel-and-data estimation problem, but propose a
turbo like detection algorithm that iterates between a channel
and data estimation phase and provides improved estimates
after each iteration. For that purpose, we employ generalized
approximate message passing (GAMP) [12] that implements
a loopy belief propagation (BP) approximating the minimum
mean square error (MMSE) estimate. The suggested approach
has smaller complexity than biGAMP, allows for a straight-
forward integration of channel decoding and a simpler state-
evolution analysis.

The following paper is structured as follows: In Sect. II, we
describe the employed system model. Sect. III reviews the gen-
eral GAMP algorithm and points out implementation details.
We propose our turbo-like joint channel-and-data detection
approach in Sect. IV. Numerical validations are provided in
Sect. V. We conclude in Sect. VI.

II. SYSTEM MODEL

We consider a typical massive MIMO system in the uplink,
where a flat block-fading channel model is assumed. The
channel H ∈ CM×K remains constant for a time of Tch
channel uses and its entries are iid. Gaussian with zero mean
and unit variance, i.e., hij ∼ CN (0, 1). The K single antenna
users transmit their symbols xij ∈ X , which come from a
power normalized QPSK constellation X and are collected
in the matrix X ∈ CK×Tch . The transmitted symbols are
corrupted by additive white Gaussian noise N ∈ CM×Tch ,
nij ∼ CN (0, σ2), resulting in the matrix R ∈ CM×Tch :

R = HX + N . (1)

After reception, the signal is quantized by the deterministic
quantizer Q(·):

Y = Q(R). (2)

The quantizer Q(·) is implemented as a scalar quantizer
Qs(·) : R → Q that operates independently both on each
component and the real <(·) and imaginary part =(·), i.e.,

[Q(Y )]ij = Qs(<(yij)) + jQs(=(yij)). (3)

In the considered case, we investigate 1-bit quantizers such
that Qs(·) can be replaced by the sign(·) function and the
quantization set is Q = {±1± j 1}.

Since the channel matrix H needs to be estimated at the
receiver, we allocate a slot of TT time instances for training
while another TD = Tch − TT channel uses are used for



transmitting the actual data. This allows a further refinement
of the model as Y =

[
YT YD

]
and X =

[
XT XD

]
:

YT = Q(HXT + NT) ∈ CM×TT , (4)

YD = Q(HXD + ND) ∈ CM×TD . (5)

The detection problem at the base station is to find an
estimate for XD while only having access to the received
and quantized symbols Y and the known pilots XT. A Bayes
optimal solution for the joint channel-and-data estimation
problem is given by

X̂D = E [XD|Y ,XT] ,

which is approximated by the scheme of [10] and is used as
a reference in the following.

III. GENERALIZED APPROXIMATE MESSAGE PASSING

A. Summary of the Algorithm
Approximate message passing methods have been intro-

duced in the context of compressive sensing in [13], [14] and
build on the theory of BP algorithms that have been used
for Bayesian inference problems for a long time. In [12], the
notion of generalized approximate message passing (GAMP)
is established and considers problems of the following form:
A vector x = [x1, . . . , xK ]

T ∈ CK with distribution px =∏K
i=1 pxi

is transformed by a mixing matrix A ∈ CM×K ,
z = Ax, before it is passed through a separable output
channel py|z =

∏M
i=1 pyi|zi . After observing y, the vector x

is to be estimated. The GAMP algorithm allows formulations
for both approximating the maximum a posteriori (MAP)
x̂ = argmax px|y and MMSE estimate x̂ = E [x|y]. In
the context of BP, these approaches are also known as max-
sum and sum-product formulations. Algorithm 1 summarizes
the sum-product version which is used in the following. For
the considered system model of Sect. II, the abstract GAMP
system model reads as

y = Q(Ax + n) = Q(z + n),

which determines the output channel py|z and the priors px. In
the next subsections, we instantiate those for our joint channel-
and-data estimation problem.

B. Output Nonlinear Step
The expectation and variance in line 12 and 13 are cal-

culated according to pz̃j |yj
(ẑj |yj), where pz̃j |yj

(ẑj |yj) ∝
Pyj |zj (yj |ẑj) · pz̃j (ẑj) and z̃j ∼ CN (p̂j , τ

p
j ). The latter

assumption is based on the central limit theorem and the
definition of ẑj in line 8. Its derivation is detailed in [12].
The output distribution Pyj |zj (yj |ẑj) is given as [7], [15]

Pyj |zj (yj |ẑj) = Φ

(
<(yj) · <(ẑj)√

σ2/2

)
· Φ

(
=(yj) · =(ẑj)√

σ2/2

)
.

(6)
The output channel (6) is the same for both the channel (8)
and data (16) estimation, as both are only observed after the
quantization operation Q(·). The involved expressions for the
expectation and variance can be solved in closed form as
shown in [16, Ch. 3.9].

Algorithm 1 Summary of the GAMP algorithm.
INPUT: observation y, distributions pxi

and pyi|zi , Ngamp
1: while t ≤ Ngamp do
2: for i = 1 to K do . Initialization
3: x̂i = Epxi

[xi]
4: τxi = Varpxi

[xi]
5: end for
6: for j = 1 to M do . Output Linear step
7: τpj =

∑
i |aji|

2
τxj

8: ẑj =
∑

i ajix̂i
9: p̂j = ẑj − τpj ŝj

10: end for
11: for j = 1 to M do . Output nonlinear step
12: ŝj = Epz̃j |yj

[z̃j |yj ]
13: τsj = (1/τpj ) ·

(
1−Varpz̃j |yj

[z̃j |yi] /τpj
)

14: end for
15: for i = 1 to K do . Input linear step

16: τ ri =
(∑

j |aji|
2
τsj

)−1
17: r̂i = x̂i + τ ri

∑
j a
∗
jiŝj

18: end for
19: for j = 1 to K do . Input nonlinear step
20: x̂i = Epxi|r̃i

[xi|r̃i]
21: τxi = Varpxi|r̃i

[xi|r̃i]
22: end for
23: end while

C. Input Nonlinear Step

The expectation and variance in line 20 and 21 are calcu-
lated according to pxi|r̃i(xi|r̂i) ∝ pr̃i|xi

(r̂i|xi)·pxi
(xi), where

it is assumed r̃i|xi ∼ CN (xi, τ
r
i ). For the channel estimation

part, the priors pxi
are iid. Gaussian with zero mean and unit

variance as stated for the assumption on hij in Sect. II. For
the data estimation, we have a uniform distribution over the
QPSK set X . In this special case, a closed form solution can
be given as

E [xi|r̃i] =
1√
2

(
tanh

(
2<(r̃i)√

2τ ri

)
+ j tanh

(
2=(r̃i)√

2τ ri

))
Var [xi|r̃i] = 1− |E [xi|r̃i]|2

IV. TURBO-LIKE, JOINT DATA-AND-CHANNEL
DETECTION

Our proposed scheme can be divided into two phases
that repeat for each iteration run. In the first iteration, we
obtain an initial MMSE channel estimate using GAMP. At
the same time, the algorithm also provides the variance of
the channel estimation error. Using the channel estimate,
we then compute the MMSE estimate of the data symbols,
while taking the knowledge about the channel estimation
error as an additive Gaussian distributed noise component into
account. The statistical properties of this noise term are derived
in Sect. IV-A. As before, we model the error in the data
estimation as an additional additive Gaussian noise term in
the next channel estimation phase (cf. Sect. IV-B). Abiding the



paradigm of joint channel-and-data estimation, the subsequent
channel estimation phases have access to both the training
data and the estimate of the payload data to improve upon the
previous iterations (cf. Sect. IV-C).

A. Initial Channel Estimation Phase
Using the identity vec(ABC) = (CT ⊗ A) vec(B) the

system model for the training symbols (4) can be rewritten as

y
T

= Q
(
(XT

T ⊗ I)h + nT

)
∈ CM×TT , (7)

where the underlined vectors represent the stacking operation
performed by the vec(·) operator. Rewriting the model in this
form allows to use GAMP to obtain the MMSE estimate of
h:

ĥ = E
[
h|y

T

]
. (8)

The original channel matrix H can be expressed as

H = Ĥ + H̃, (9)

where H̃ denotes the zero mean channel estimation error.
Because of this property, the variance of the entries h̃ij is
given by

σ2
h̃ij

= Var
[
h̃ij

]
= Var

[
x(j−1)M+i|r̃(j−1)M+i

]
, (10)

which is calculated by GAMP in the nonlinear output step (cf.
line 13, Algorithm 1).

B. Data Estimation Phase
Eventually, the adapted system model (5) reads as

YD = Q((Ĥ + H̃)XD + ND) = Q(ĤXD + H̃XD + ND︸ ︷︷ ︸
Ñ ch

D

)

= Q(ĤXD + Ñ ch
D ). (11)

The columns ñch
D,j , j ∈ {1, . . . , TD} exhibit the statistical

properties

E
[
ñch

D,j

]
= 0 (12)

Cov
[
ñch

D,j

]
= diag(σ2

ñch
D,1
, . . . , σ2

ñch
D,M

), (13)

where the the diagonal elements σ2
ñch

D,i
can be calculated as

(see Appendix A))

σ2
ñch

D,i
=

K∑
k=1

σ2
h̃ik

+ σ2. (14)

For each time instance of the data phase j ∈ {1, . . . , TD},
we have the system model

yD,j = Q(ĤxD,j + ñch
D,j), ñD ∼ CN (0,Cñch

D,j
), (15)

where Cñch
D,j

is the diagonal covariance matrix of (13). As
in (7), we can now employ GAMP to compute the MMSE
estimate for the data symbols:

x̂D,j = E [xD,j |yD,j ] . (16)

As before, we investigate the statistical properties of the
estimation error X̃D = XD − X̂D, which can be calculated
as

σ2
x̃D,ij

= Var [x̃D,ij ] = Var
[
x(j−1)M+i|r̃(j−1)M+i

]
(17)

C. Subsequent Channel Estimation Phases

At this point, we start over and improve our channel
estimation by incorporating the additional knowledge about
the data estimates. Hence we obtain,

Y = Q(HX + N) =

= Q(H
[
XT X̂D + X̃D

]
+
[
NT ND

]
)

= Q(H
[
XT X̂D

]
+ [NT ND + HX̃D︸ ︷︷ ︸

ÑD
D

])

= Q(HX̃ + Ñ). (18)

The derivation of the statistical properties of ñD
D,j follow the

lines of (12), (13) and are detailed in Appendix B.

E
[
ñD

D,j

]
= 0, (19)

Cov
[
ñD

D,j

]
=

(
K∑

k=1

σ2
x̃kj

+ σ2

)
I. (20)

We rewrite (18) using the vectorization operator and obtain
the stacked model as

y = Q((X̃T ⊗ I)h + ñ) ∈ CMTch . (21)

Therefore, the new MMSE estimate for H is given by

ĥ = E
[
h|y
]
. (22)

The iterative procedure is summarized in Algorithm 2.

Algorithm 2 Iterative Data Detection and Channel Estimation
INPUT: Y , XT, σ

2, Nturbo
1: t← 1
2: while t ≤ Nturbo do
3: if t = 1 then
4: Estimate Ĥ(1) using (8)
5: else
6: Estimate Ĥ(t) using (22)
7: end if
8: Calculate C

(t)

ñch
D

using (13)

9: Estimate x
(t)
D,j ,∀j ∈ {1, . . . , TD} using (16)

10: Calculate C
(t)

ñD
D,j
,∀j ∈ {1, . . . , TD} using (20)

11: t← t+ 1
12: end while

D. Complexity Analysis

The complexity of the JCD approach [10] is dominated
by 10 matrix multiplications per iteration as highlighted
in [11, Sect. 2-H], i.e., we have an overall complexity of
O(10MKTchNJCD), where NJCD denotes the number of re-
quired iterations to converge.

As Algorithm 1 reveals, we need four matrix-vector mul-
tiplications per iteration (cf. lines 7, 8, 16, 17). For the
channel estimation part of the turbo iteration the complexity
is therefore O(4MKTTNgamp) for the initial iteration and
O(4MKTchNgamp) for the subsequent ones, when the data es-
timates can be used as well. We note that this is because of the



sparse mixing matrix of (7) and (21) which have only MKTT
and MKTch non-zero entries, respectively. For the data es-
timation phase, the complexity is O(4MKTDNgamp). Hence,
the overall complexity for a number of Nturbo turbo iterations is
O((4MKTT + 4MKTch(Nturbo−1) + 4MKTDNturbo)Ngamp).

Comparing both complexity expressions, we observe that
the turbo-like scheme is clearly advantageous if NgampNturbo ≤
NJCD.

V. SIMULATION RESULTS

In the following, we consider a quantized MIMO system
with M = 200 antennas at the base station and K = 50
users. In order to allow comparisons with [10], we set the
total channel coherence time to T = 500 channel uses.
The signal-to-noise (SNR) ratio is defined as SNR = 1/σ2.
Fig. 1 illustrates the need for JCD estimation by considering
a pilot-only scheme. Even if the number of channel uses for
pilot transmission is increased from the minimum number
of TT = 50 to TT = 200, we observe that the uncoded
BER performance saturates which results in a large gap to
the perfect CSI performance. In all three cases, the channel
estimate was obtained by (8) without any further iterations.
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Fig. 1. Comparison of a pilot-only scheme to the perfect CSI performance.

Fig. 2 shows the performance of our proposed turbo-like
scheme and compares it with the JCD approach of [10]. For
both the channel and data estimation we set Ngamp = 10
(cf. Algorithm 1) and vary the number of turbo iterations
Nturbo from 3 to 20 (cf. Algorithm 2). The Bayes optimal
JCD approach needs NJCD = 250 iterations to converge. We
use TT = 50 channels uses for training and TD = 450 for data
transmission. Increasing the number of turbo iterations to more
than 10 does not improve the performance significantly. This
is also reflected in Fig. 3 which shows the corresponding MSE
for the channel estimation. The Bayes optimal JCD saturates
at around −14 dB and we obtain the same performance in the
medium and high SNR regime with 10 turbo iterations.
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Fig. 2. Performance comparison of the Bayes optimal JCD scheme and the
proposed turbo-like approach for different number of iterations.
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Fig. 3. Comparison of the quality of the channel estimation for both Bayes
optimal JCD and the proposed scheme in terms of the MSE.

VI. CONCLUSION

We presented a novel approach for JCD estimation in a
quantized massive MIMO system. The channel and data are
estimated subsequently and the estimation error of each phase
is modeled as additional additive noise for the following one.
The simulation results show that the performance of a Bayes
optimal JCD scheme based on biGAMP can be achieved with
lower complexity. For the future, we aim at combining this
approach with channel coding and perform an analysis in
the large system limit that allows for tractable expressions to
optimize the number of pilots.



APPENDIX

A. Derivation of the noise covariance matrix for the data
estimation phase

We have

Cov
[
ñch

D,j

]
= Cov

[
H̃xD,j + nD,j

]
= Cov

[
H̃xD,j

]
+ σ2I.

We define p = H̃xD,j such that pi =
∑K

k=1 h̃ikxD,kj . Since
both the data symbols xD,kj and the entries of the estimation
error matrix h̃ik are stochastically independent, we calculate

E
[
pip
∗
j

]
= 0,∀i 6= j,

E
[
|pi|2

]
=

K∑
k=1

σ2
h̃ik
.

Hence, we arrive at

Cov
[
ñch

D,j

]
= diag

(
K∑

k=1

σ2
h̃1k

+ σ2, . . . ,

K∑
k=1

σ2
h̃Mk

+ σ2

)
.

We note that the noise covariance matrix is the same of each
time index j ∈ {1, . . . , TD} so that we drop its dependance in
the following.

B. Derivation of the noise covariance matrix for the channel
estimation phase

We have

Cov [Hx̃D,j + nD,j ] = Cov [Hx̃D,j ] + σ2I.

We define p = Hx̃D,j such that pi =
∑K

k=1 hikx̃kj . As
before, we exploit the stochastic independence of both x̃D,kj

and hik, yielding

E
[
pip
∗
j

]
= 0,∀i 6= j,

E
[
|pi|2

]
=

K∑
k=1

σ2
x̃kj
.

In this case, the adapted noise covariance matrix turns out
to be a scaled identity that may be different for each j ∈
{1, . . . , TD}:

CñD
D,j

= Cov
[
ñD

D,j

]
=

(
K∑

k=1

σ2
x̃kj

+ σ2

)
I.
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