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Laser Beam Melting (LBM) is an additive manufacturing process which simultaneously involves mul-
tiple physical phenomena such as thermo-fluid dynamics, irradiation and phase change. Therefore, an
understanding of the significant underlying physical processes and their interaction is very challeng-
ing. This problem can be addressed by means of a numerical modeling approach. Within this work a
numerical model of LBM based on the meshless computational method Smoothed Particle Hydrody-
namics (SPH) is presented. SPH was originally introduced by [1, 7]. Due to its meshless nature and,
especially, in multi-phase formulation suggested by [2, 3] it is very convenient for the simulation of
additive manufacturing processes such as LBM.

Furthermore, its implementation turns to account the parallelization capabilities of GPGPUs for achiev-
ing a reduced computation time. Physical phenomena such as the heat transport due to laser beam ra-
diation, thermal conduction, phase transitions, convection, and effects related to surface tension and
thermocapillarity are considered. Approaches for modeling the recoil pressure induced by evaporation
are applied - following essentially [6, 5, 4].

The buoyancy due to temperature gradients is taken into account by means of the Boussinesq approxi-
mation. The relevant material data for the investigated Ni-based alloy Inconel718 R© are implemented as
a function of temperature and the required values are taken from literature [11, 9, 10, 8].

The simulation results are compared with experimental data of single melt tracks to evaluate the validity
of the model with regard to the process parameters (e.g. scanning velocity, laser power).
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