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BACKGROUND

Regulation of railway traffic aims at ensuring safe, punctual and energy-efficient train
operations. The usual basis for this is the timetable (the plan of train departures, passing times
and train arrivals). In the presence of disturbances caused initially by delays, train dispatchers
rely on their own experience to modify the timetable to create what is known as a working
timetable, while the efficiency of this is often unknown. In such cases deploying automatic
rescheduling tools have been shown to improve performance by limiting delays  and returning
operation to the planned timetable as quickly as possible (Cacchiani et al., 2014).

In practical implementations of rescheduling systems, important matters are quickly to compute
an appropriate dispatching measure to be disseminated to affected trains and junction
controllers). The objective of the present research is therefore to develop a control framework
that responds to disruptions in a way that is adapted according to the current operating conditions.
The approach developed here is based on approximate dynamic programming (ADP), which can
accommodate the complexity of railway operations and hence can optimise railway traffic
quickly and reliably.

The effectiveness of an ADP formulation depends on specification of the objective function, and
within this the choice of variables to describe the state of the railway system. In the present case
of railway rescheduling, there are numerous candidates. This choice is dependent on the
requirements and constraints of railway operators and infrastructure managers, where in many
cases these include mutual inconsistencies. Therefore, we focus our evaluation on the
performance of the ADP formulation and the effects of different objective functions according
to a range of measurements including and exceeding their primary objective.

ADAPTIVE RAILWAY TRAFFIC CONTROL

We consider sequence controls at the time each train enters a designated control area: each such
event corresponds to a stage of the dynamic optimisation. Let s,, € S be a vector of state variables
of the system at stage n, u,, € U the decision variable for stage n, and g the cost during a single
stage. Given the initial state s, and a sequence of decisions u, a future-discounted dynamic
programme is:

min E {Zn ang(sn; un; Sn+1) I 50} (1)
ueu

where s,11 =1 (Sy, Un, Va), v, represents arrivals during stage n, and f{.) represents the state
transition (plant) function.

" Initial delays that arise in traffic, e.g. longer than planned dwell times, are defined as primary delays and delays
that are propagated to other trains from the primary delays are defined as consecutive delays. The combination of
these delays is defined as total delays.
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This is addressed by calculating recursively:
](sn) =minkE {g(sn'un) sn+1) + Ont1 ](Sn+1 )} (2)
un€l

where ] is the value of future discounted costs that depends on the state and, implicitly, optimal
future decisions, o is the discount factor that here is calculated as a, = e""®) and E denotes
the expectation over stochastic variation. In the present case of railway traffic control, the state
S, 1s a combination of traffic state and control state at stage n and the controls are decisions for
the sequence of mutually incompatible trains.

Although equation (2) represents an elegant way of optimising railway traffic, it can be
computationally expensive and therefore is not practical for operational use. The reason for this
is the need to consider many future states to evaluate the optimal decision at each stage.
Furthermore, states are increasingly uncertain into the future. Together, these lead to increasing
volumes of calculation that has decreasing certainty and relevance to the current decision with
time into the future. Therefore, we reduce the number of states considered by replacing the true
value J(.) with an approximate value function J(.) to make the computational requirement
polynomial to the number of state variables, rather than being exponential to the size of state
space. We employ a separable linear approximation function, which can be expressed as:

J(s,) = 1T.$(s) 3)

where 7= (r1, 2, ... r)" is a column vector of coefficients and ¢ is a features extraction function
(or basis function) defined on the state space S and so maps the state to a feature vector for
which r is the associated weight vector. Hence at each stage n we calculate:

N

Up = aTgTLﬁEiz]l E {z ;9 (Sp+is Un+ir Sn+i+1) T Ani1 S Snane1 o) 4)
i=1

where N is the number of stages to be considered explicitly.

For features ¢ in equation (3), we extracted the scheduled running time of remaining trains in
the control area (¢p,) and their expected entrance delays (¢,) to approximate value functions
J(s, 7). We considered three objective functions to evaluate the cost during a single stage g in
equation (4): 1) Minimising total consecutive delays, 2) minimising total delays, and 3)
minimising total running times inside the control area.

Objective 1 = Z[dn]+ (%)
n

Objective 2 = z e + z d, 6)
n n

Objective 3 = z T, + Z[dn]+ (7
n n

Where d,, is the accumulated consecutive delay inside the control area per stage, LS, is delay on
entry to the control area, and T;, is the scheduled running time inside the control area.
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To achieve convergence between the true value function J and the approximated value function
J, the vector of weights r is updated according to information as it becomes available from the
operating environment. There are several different methods for updating r (Powell, 2011),
among them Reinforcement Learning techniques have received considerable attention in the
literature and have been adopted successfully to ADP approaches for adaptive traffic
management (Cai et al., 2009). In this investigation, we use the least-squares temporal difference
(LSTD) learning technique as presented by Bradtke and Barto (1996).

RESULTS AND DISCUSSION

To evaluate the present ADP approach, infrastructure and operational data for a section of Great
Britain’s East Coast Main Line (around 20 km between Stevenage Station to Hatfield Station)
was used to simulate disturbances and compare First-Come-First-Served (FCFS) sequences
against those calculated using ADP. We used 2018 timetable for the area for the southbound
morning peak hours between 7:00 and 10:45 am which includes 30 trains. In total, we randomly
generated 60,000 individual train delays (2000 morning peaks) resulting in a mean entry delay
of 9 minutes 56 seconds.

We found that the ADP approach achieves superior performance compared to FCFS using all
objective functions, though performance varies among the objective functions. Table 1 presents
comparison of performance based on delays on the exit of our test case network for each of the
objective functions, and hence provides a combined view of performance. It is apparent that
Objective 2 does not perform well: the performance under ADP with this objective is worse than
with the others, even in terms of its own measure. Noticeably, Objective 1 and Objective 3 both
perform better in terms of Objective 2’s primary objective i.e. minimising total delays.

Mean total Mean total | Mean running
consecutive delay (s) - | delay (s) - time (s) -
Ob;.1 Obj.2 Ob;.3
FCFS 155.21 16409.96 285.11
ADP-Obj.1 62.48 16291.24 281.06
ADP-Obj.2 96.38 16304.51 281.51
ADP-Ob;j.3 73.32 16278.07 280.61

Table 1 - Comparison of objective functions against all performance measures

Fig. 1 presents total consecutive delays for all simulated morning peaks (all delay scenarios). It
is evident from this graph that Objective 1 performs the best in all percentiles shown on the
graph. Objective 2 has more variance after the 95" percentile compared to others. The maximum
for Objective 2 is higher than the maximum for FCFS. Fig. 2 presents total delays for all delay
scenarios. Improvements in total delays are small compared to FCFS. The reason for this is the
limited opportunity for bringing trains back to their planned schedules. All objective functions
improve total delays with Objective 3 performing the best. Fig. 3 presents train running times
for all trains. All objectives perform favourably compared to FCFS in this measure up to the 95"
percentile. Higher maximums in Fig. 3 for our objectives indicate trains that were held at the
junction to allow other trains through. This action is beneficial as is evident from the improved
overall performance.
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Considering all findings (Fig. 1 - Fig. 3), it is evident that performance of the ADP approach is
sensitive to the choice of objective function and unsuitable choice can result in poor performance.
We have shown that, in the case of railway rescheduling, objective functions may be
outperformed by others in terms of their primary objective. In any case, the ADP approach
outperforms FCFS. The benefits of the ADP approach include improved management of
perturbations to the operation of trains, resulting in improved resilience of operation and
capability to run trains at reduced headways, and hence increased capacity.
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Fig. 1 — Average consecutive delay per scenario Fig. 2 — Average total delay per scenario
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Fig. 3 — Train running times inside the control area
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