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Introduction 

 

Researchers in the past decades have been developing advanced dynamic traffic management policies 

that i) are based on coordination of individual control points and ii) explicitly take into account the 

network-wide effects of control actions, thanks to predictive traffic propagation and route choice 

modelling. In works such as those of (Aboudolas et al., 2010; Geroliminis and Daganzo, 2008; 

Rinaldi et al., 2016; Rinaldi and Tampère, 2015; Taale, 2008; Taale and Hoogendoorn, 2012) 

network-wide approaches combined with model-based control strategies have been object of 

considerable research effort.  

While the body of literature concerning traffic control strategies evolved considerably over the years, 

little attention has been devoted to strategic network control design: determining the location, kind 

and amount of controllers contributing to the aforementioned coordinated strategies is largely an ad-

hoc process, in which either existing infrastructure is simply adapted and connected, or expert 

knowledge is applied in a case-by-case fashion, disregarding the role that control infrastructure plays 

in network-wide performances (Cantarella and Sforza, 1995).  

Missing a network design view of controller placement can be considerably detrimental: the 

maximum extent to which any control strategy can steer traffic conditions towards more optimal 

alternatives is operationally bound to only those flow distributions that can be triggered by the 

existing set of controllers.  

In this work, we explore the relationship between location and amount of controllers and the 

corresponding network-wide performance, showcasing how indeed these topological attributes are 

directly linked to the network’s emergent behaviour. We exploit the control theoretical concept of 

structural controllability of complex networks (Lin, 1974; Liu et al., 2011) to relate the topological 

aspects of the equipped control intrastructure and the resulting network dynamics, and perform 

validation on a simple case study, showcasing how indeed full controllability solutions are capable of 

reaching System Optimal performances.  

Methodology 

In order to apply the theory of structural controllability of complex networks to the case of 

transportation networks, after selecting as descriptive state of the system the Cumulative Vehicles 

Number at nodes (from which all other significative measures of traffic performance can easily be 

derived), we assume the following: 

• Linearity: the dynamics of the Cumulative Vehicle Number at nodes are slow enough to be 

correctly represented by piecewise affine functions; 

• Newell’s Kinematic Wave Theory compliant flow propagation dynamics; 

• Triangular Fundamental Diagram; 

• Deterministic User Equilibrium route choice: users entering the network have perfect 

information of the network travel times they will experience, and react accordingly in terms 

of chosen routes; 



• The effects of traffic control policies are fully captured by the input matrix elements { }ijb  and 

input signal vector )(U  ; 

• Travel times between consecutive nodes (including both topological effects and congestion 

effects) are fully captured by the state matrix elements { }ija .  

Based upon these assumptions, we develop the formulation of Equation (1) (for the sake of concision, 

the full derivation is left out of the abstract): 
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where | |n N   is the total amount of nodes in the network, { }jG g  is the set of pricing controllers 

equipped on the network and { }ij   that of traffic light controllers. The structure of matrix A , i.e. 

knowledge on which elements { }ija are equal to zero and which aren’t, is assumed fixed and correct. 

The exact values, for the sake of our goals, are irrelevant, as long as the individual elements don’t 

collapse to zero, which would directly impact the controllability properties of the given system. In 

network behaviour terms, this implies that we don’t require exact information on how fast vehicles are 

traveling from a node to its successor(s), but only knowledge on whether or not any flow is present. 

Incidental situations in which said flows would become zero (gridlock conditions) are considered 

irrelevant from the perspective of designing controllers. 

Following Kalman’s controllability theory, once the network’s dynamics are correctly modelled in the 

form (1), a network can be deemed controllable if the following condition holds: 
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that is, the chosen controller set M G   yields full controllability if and only if the matrix rank 

of the controllability gramian cW  is full.  

In the following we show how indeed this condition holds for a simple network, and how for 

instances of control infrastructure yielding less than full rank, System Optimum cannot be reached. 

Further results on more general networks, derived through optimization, will be showcased at the 

symposium.   



Results 

 

We perform a fully explorative analysis of the Total Cost objective function solution space, and how 

this varies for different sets of equipped controllers, on a very simple network, which we abundantly 

explored in recent works (Rinaldi et al., 2017), shown in Figure 1. 

 

Figure 1: Three-PAS network. 

We consider OD demand flowing vertically along couples A-D, B-E and C-F, and we assume that 

link cost functions ( )l lc f  are constant for all links apart from links 10-13, who instead are equipped 

with the BPR cost function (( ) 1 / 400)l l l l lc f gf    , with the following parameter values: 

 

Table 1: BPR function parameters for Test Case 1. 

Link Parameters 

Link 10 10 100.5, 2    

Link 11 11 110.2, 4    

Link 12 12 120.5, 4    

Link 13 13 130.4, 2    

 

and where lg  is the additional cost levied by a pricing controller, if installed on the given link. 

We begin this exploration by examining the Total Cost objective function’s shape when a single 

pricing controller is equipped on either link 10, 11, 12 or 13, as shown in Figure 2. 

 



 

Figure 2: Total Cost objective function shapes for separate controllers. 

Interestingly, equipping controllers 10g  or 13g  alone brings no gain to the system as a whole: the 

global minimum for both resulting objective functions is at 
* 0g  , thus yielding Total Cost equal, by 

definition, to the User Equilibrium value (marked in Figure 2 by the black dashed line). Controllers 

11g  and 12g  instead both exhibit individual global minima in the vicinity of 
* 2g  (marked in Figure 

7 by the light green dashed line), bearing a visible reduction of Total Cost. For these four individual 

controllers, the percental distance from System Optimum and the corresponding degree of 

controllability (computed as )( /) ( ( )crk W BB n  ) are as follows: 
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We then consider all six possible couples of controllers, 10 11[ , ]g g , 10 12[ , ]g g , 10 13[ , ]g g , 11 12[ , ]g g ,

11 12[ , ]g g , 12 13[ , ]g g , and show the respective Total Cost solution spaces in terms of contours in 

Figure 3(a-f). 

The globally minimal points are easily identified by darker coloring, and are consistently found in the 

range 2.5g . While not very clear to the naked eye, within these six combinations a clear “best 

case” arises, as can be seen when considering the percental distance from System Optimal total cost: 
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(a): 10 11,[ ]gg   (b): 10 12, ][ gg   

  

(c): 10 13, ][ gg   (d): 11 12, ][ gg   

  

(e): 11 13, ][ gg   (f): 12 13, ][ gg   

Figure 3: Total Cost objective function solution space shape for different couples of controllers. 

 

 

 

 



The degree of controllability is again constant for all combinations, valued at ( ) 2 / 3B  . This is 

unsurprising: even though combination 11 12,[ ]gg  is closest to the System Optimal value, for this 

network no less than three controllers are necessary to achieve full controllability. Indeed, any 

combination of three controllers yields a value ( ) 1B  , and correctly captures the full three-

dimensional behaviour of this network. Equipping controllers beyond this amount, up to and including 

first best pricing solutions, yields no additional gains in terms of reachable network-wide 

performance. 

Conclusions 

In this work we investigated the extent to which choosing locations, kinds and amounts of controllers 

to be installed in a transportation network affect the performances of network-wide control 

approaches. Test results showed how indeed amount and locations of controllers influence network-

wide performances, in terms of solution space shape and relevance of reachable minima with respect 

to System Optimum. Measuring the degree of controllability through our proposed formulation 

correctly captures this aspect.  

During the symposium we will showcase how the degree of controllability can be exploited to 

develop a controller placement algorithm that parsimoniously locates controllers on general networks, 

and how this algorithm performs compared to other location strategies in literature. 
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