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1 Introduction

In this research, we proposed a dynamic discrete-continuous model and designed algorithm for evaluation of
evacuation behavior in networks under disaster situations.

The time from the moment when disaster occurs to the evacuation complete time varies greatly depending
on the types of disaster. If the time is not so short, people tend to think that there is enough time and choose
to evacuate only after conducting activities other than evacuation. For example, in the Great East Japan
Earthquake that caused great damage in Japan in 2011, there was a delay of about 40 minutes before the
arrival of the tsunami in some area. The results of our survey shows that although it covers only survivors,
over 30％ of them chose activities in danger zones before evacuation. As for the victims, lager proportion
of people may have chosen activities in danger and suffered from tsunami. In order to analyze evacuation
behaviors, it is necessary to describe the risk perception of the completion time of each evacuation performed
by each individual and recognition about planning for the future.

Therefore, in this research, we suggested a model based on discrete-continuous model which explicitly
handles constraint time and considers sequentially selection of activity type which is discrete variable and
time allocation which is continuous variable at the same time.

2 Model Framework

Based on Habib(2011)’s model[1], we expanded A conventional static discrete-continuous model to a format
that can deal with dynamic scheduling problems by incorporating time discount rate (Bellman, 1957[2])for
discrete choice. Time discount rate reflects how organized the scheduling is under circumstances requiring
evacuation. We also considered that time constraint perception is different for each individual depending
on the characteristics of personal preference or geographical surrounding conditions. Heterogeneity of time
constraints reflects differences in risk perception.

We derive the selection probability by assuming the Markov process for the utility function of discrete
selection. In addition, the utility function of continuous selection is derived considering both the allocation
time to the current activity and the allocation time to all future synthesis activities, and the Kuhn Tucker
optimization condition under the constraint time condition Apply. For each of these selection probabilities,
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i.i.d. Gumbel distribution is assumed and its marginal probability is converted by an inverse function of the
standard normal distribution. As a result, the simultaneous selection probability according to the bivariate
normal distribution having the correlation by the converted two standard normal distributions is obtained.

When individuals realize the occurrence of the disaster, they decide whether to evacuate considering the
risk and utility of future activity. At the same time, they decide how long time they should take for each of
the just selected activity and how long time should be left for later. They sequentially repeat this process
until the ”time limit”, the moment they think that they can act safely. This result is scheduling of each
individual.

It can be used as a evacuation planning method in advance.
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Figure 1: Dynamic descrete-continuous choice model incorporating heterogeneity of time constraint

We assumed utility function and time constraint as below. Let us suppress the subscript i for the utility
function of the individual i.

Discrete Choice

Uj = Vj + βVcj + εj (1)

(2)

where V is the systematic utility of activity type choice for the chosen activity (j) and future activity
altenatives (cj). β is time discount rate. εj is the unobsevable random error term.

Continuous Choice

U(tk) =
1

αj
exp(V ′

j + ε′j)(t
αj

j − 1) +
1

αc
exp(V ′

c + ε′c)(t
αc
c − 1) (3)

where t is the time expenditure, α is the satiation parameter, V ′ is the systematic utility of time expenditure
choice and ε′ is the unobsevable random error term for the chosen activity (j) and future composite activities
(c).

Time Constraint
Ti = f(sociali, geoi) (4)

tj + tc = T ji (5)
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Ti =
∑

tj (6)

Under these constraints, the joint probability of discrete and continuous choice is led by using an inverse of
the cumulative standard normal variable (Ψ−1). Based on the joint probability, the likelihood function (Li)
can be written as:
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such that

J1(εj) = Φ−1
[
(εn − εj) < (Vj − Vn)

]
(8)

J2(ε
′
j) = Φ−1

[
(ε′j − ε′c) < (V ′

j − V ′
c )
]

(9)

where ρ is correlation and σ is a scale parameter.

3 Case Study and Conclusion

We estimated parameters as a case study using survey data about the Great East Japan Earthquake in 2011
and the reproducibility of the model was confirmed. We conducted the survey in Rikuzentakata-city, Iwate
Prefecture, Japan. In the Great East Japan Earthquake, the cause of the death of 90 ％ of the victims
was drowning and the arrival time of tsunami was about 40 minutes later than the occurrence of the first
earthquake.

In this case study, the primary Markov process was assumed. That is, we assumed that activity type was
selected after considering the activity selection one step ahead.

Table 1 is a result of estimation. This shows some of tendency under evacuation circumstances.
Firstly, elderly people are more likely to choose evacuation and time assigned to evacuation is short.

Therefore, in an aging society, the usefulness of a tsunami evacuation tower that does not require long-term
travel for evacuation is expected.

Secondly, we found that evacuation decision is not organized enough. Our research showed that time
discount rate for discrete choice is small. That is, the planning is unreasonable because the future utility can
be often ignored and decision making is done ad hoc.

Finally, according to the value of the explanation parameter related to the time constraint, there is a big
difference in behavior scheduling between high risk area and low risk area. If at the time of occurrence of the
earthquake individuals are close to the coast, where tsunami arrival is fast, they are more likely to consider
time constraint is short. So they tend to start evacuation immediately. However,if they are far from the
coast, they judge time constraint is long maybe because the moment of tsunami arrival is often later than
that in the area close to the coast. It seems natural that time constraint which individuals recognize depends
on geographical place, but it can be a serious problem. Traffic demand for evacuation from 2 area(an area
close to sea and one far from sea) may overlap near the shelter. This tendency can cause serious congestion
and lead a lot of people into failure of evacuation before arrival of danger, tsunami.

We contracted Rikuzentakata city to a liner city (Fig. 2) and then calculated virtual evacuation flow and
the delay time due to congestion. The result is shown in Fig. 3. It revealed that the link 1, which is near the
shelter, was crowded in the later time zone in case of present condition (i). In the preliminary reconstruction
plan, it is usually considered safe to relocate cities so as to lengthen the distance from the coast of the
urban area. However, because of cognitive tendency about a time constraint based on sea distance, in fact
congestion may occur and people may fail to evacuate by the time of danger arrival. Evacuation will not
succeed simply by emigrating to a safe area.
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In evacuation network planning, it is necessary to strategically plan the capacity allocation of transporta-
tion network, especially in areas where car evacuation is necessary. Or, by conducting disaster prevention
education in advance (case (ii) in Fig. 3), it may be possible to change such constraint time perception and
ask individuals to evacuate as immediately, regardless of the distance from the coast. It reduced the delay
time due to congestion.

Analysis of such evacuation behavior and management of traffic flow based on that mechanism were shown
to be indispensable. By using the model of this research, it is possible to evaluate each case reflecting the
change of various factors of the assumed disaster scenario, such as change of social composition, education,
urban structure change.
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Figure 2: Contract of Rikuzentakata city
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Figure 3: Delay time due to congestion by time zone
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Table 1: Estimation result
case 1 case 2 case 3

time discount rateβ as a parameter 0 0.5
explanation variables parameter t-value parameter t-value parameter t-value

time expenditure choiceψ
V ′
j baseline utility

evacuation
man dummy -0.432 -0.974 -0.239 -0.587 -0.462 -1.040
aged dummy -0.979 -2.094 -0.772 -1.914 -0.985 -2.120
car use dummy 0.459 1.202 0.416 1.156 0.500 1.317
sea distance(*1) -1.075 -0.766 -0.329 -0.268 -1.111 -0.782

other activities
degree of ”for other” 0.885 1.042 1.108 1.395 0.757 0.889
constant -0.481 -1.080 -2.703 -1.944 -0.470 -1.044

common
area dummy 1 -0.445 -0.604 1.424 1.324 -0.461 -0.632

2 1.000 NaN 1.000 NaN 1.000 1.272E+14
3 0.660 NaN 0.423 5.601E+09 0.512 NaN
4 1.000 3.285E+10 1.000 NaN 1.000 NaN
5 0.693 2.497E+10 0.615 NaN 0.023 4.438E+12
6 1.000 NaN 1.000 1.756E+10 1.000 1.075E+15
7 0.225 NaN 0.937 NaN 0.448 NaN
8 1.000 3.851E+10 1.000 NaN 1.000 NaN

V ′
c baseline utility

evacuation
man dummy -0.562 -1.110 -0.782 -1.563 -0.551 -1.086
aged dummy 0.275 0.533 -0.187 -0.382 0.304 0.587
car use dummy -0.173 -0.377 -0.273 -0.597 -0.199 -0.433
sea distance(*1) 0.398 0.200 -2.220 -1.303 0.470 0.232

other activities
degree of ”for other” -1.194 -1.009 -0.154 -0.138 -1.202 -1.006
constant 1.367 2.326 1.000 6.713E+10 1.398 2.262

common
area dummy 1 0.836 1.333 0.130 0.219 0.858 1.357

2 0.534 0.990 -0.137 -0.293 0.530 0.968
3 0.256 0.468 -0.274 -0.549 0.263 0.473
4 0.605 1.563 0.275 0.780 0.613 1.571
5 0.639 1.242 0.165 0.373 0.651 1.253
6 -0.317 -0.372 -0.361 -0.422 -0.297 -0.347
7 -0.343 -0.264 0.223 0.162 -0.354 -0.269
8 -0.017 -0.025 0.074 0.116 -0.025 -0.037

satiation parameter(*2) αj -0.575 -11.779 -0.559 -11.491 -0.573 -11.587
αc 0.539 NaN 0.958 NaN 0.306 1.289

activity choice γ
evacuation
man dummy -2.027 -4.610 -4.915 -11.322 -2.125 -4.623
aged dummy 0.177 0.407 -2.340 -5.058 -0.057 -0.129
car use dummy 48.060 2.474 63.443 1.187 68.705 5.515E+06
sea distance(*1) -1.721 -1.181 -17.561 -8.729 -2.216 -1.440

other activities
degree of ”for other” -19.935 -18.338 -15.937 -18.789 -20.766 -20.400
area dummy 1 -8.142 -11.988 35.577 2.488E+05 -8.645 -13.107

2 -10.541 -10.767 -8.095 -11.239 -11.222 -11.314
3 -10.868 -11.259 -10.771 -8.462 -11.428 -12.064
4 -6.850 -10.284 -9.980 -8.487 -7.550 -12.436
5 -9.959 -11.627 -6.367 -8.649 -10.669 -13.258
6 -11.836 -7.687 -9.685 -10.046 -12.812 -7.081
7 -12.483 -8.148 -23.894 -1.438 -13.049 -8.210
8 -10.004 -10.720 -12.654 -6.291 -10.702 -11.188

constant 6.719 13.314 0.400 9.079 6.837 13.107
time discount rateβ 0.579 12.352
correlation coefficientρ(*2) -0.237 -1.977 -8.900 -7.934 -0.263 -2.255
time constraint τ(*3)
man dummy 7.354 NaN -0.145 -1.246 0.888 0.552
aged dummy 7.960 NaN 4.761 NaN 0.966 0.549
sea distance(*1) 4.471 NaN 8.534 NaN 0.572 0.401
constant 4.721 NaN 13.892 NaN 0.803 0.791

initial likelihood -2448.550 -2448.550 -2448.550
final likelihood -1826.531 -1923.997 -1827.767
likelyhood ratio 0.254 0.214 0.254
modified likelihood ratio 0.234 0.194 0.234

*1 unit: 10000 m
2 Each parameter b must satisfy 0 < b ≤ 1, so the value on this tab is a that is represented b = 1 − exp(a).
3 unit: 1000 minutes
4 It did not converge within 100 iterations of the BFGS method, and the parameter is that obtained at the final stage.
5 The t value was derived using the Moore-Penrose type generalization inverse matrix.
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