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1 Introduction

Recent advances in communications and IT technology have underpinned the rapid development of trans-
portation network companies (TNCs) in recent years [8]. Although the competitive prices offered by TNCs
have been well-received by users, recent studies indicate that the resulting increase in public welfare [6] is
temporary, as passengers are likely to be steered away from public transport. Indeed, a recent study by
[5] has presented evidence that such shifts have already occurred and can be directly linked to increased
congestion in major cities.

Many studies in taxi pricing [e.g. 4, 9] have adopted an economic theory perspective, using aggregate
demand and supply models to represent the dynamics of urban taxi operations. Dynamic pricing has
also been considered, for example by [7] who adopt a Vickrey-Clarke-Groves (VCG) bidding mechanism
for shared autonomous taxi rides to maximise social welfare. The impact of dynamic pricing to TNC
operations was investigated in [3], suggesting that a dynamic increase in trip price significantly increases
the supply of rides in the system.

However, the relationship between dynamic TNC pricing strategies and public transport provision
remains unexplored to this date. To address this issue, we propose a novel, game-theoretic, dynamic
pricing model that accounts for multiple TNCs operating alongside public transport services. This is
applied to a city-wide service scenario, and compared to an alternative static pricing model that serves as
a baseline. Finally, we perform a comparative analysis of expected utilities for travellers and operators,
while monitoring mode share fluctuations across a range of competitive scenarios and market structures.

2 Model Description

The key actors in our model are two symmetric TNC firms offering an identical product (rides) of equivalent
quality. A centralised platform receives ride requests from the public. Both firms are expected to respond
to these requests, with quotes for service and estimates of anticipated wait and travel times. Travellers
can then decide (using a generalised costing mechanism) whether to accept an offer or to revert to public
transport.

TNCs are expected to operate with a profit maximization objective and are allowed to introduce
surcharges upon the base prices for each trip. These are based upon current demand levels, and a TNC’s
perception on the ability of its competitors to serve a specific trip request. Using dynamic pricing, the
final bid price is the sum of a variable base price r per time of travel set by the platform, and the TNC’s
choice of an extra variable tariff per time of travel fi.
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The price pi for company i is calculated using (1) and (2):

pi = fi + r ∀ i (1)

fi ∈ R+ ∀ i (2)

The variable base price level r is set by the platform and assumed to apply to both firms. This depends
upon the number of available vehicles Qi for each firm i, and the total number of trip requests D currently
in the queue. The minimum value of r, denoted r0, is the lowest value in the set C of marginal costs per
unit travel time, with ci being the cost for each TNC i.

We use equations (3), (4) and (5) to determine r, with α, β and γ determined through calibration:

r = r0 +
α

β(
∑

iQi

D
)2 + γ

(3)

r0 ≥ minC (4)

D ∈ Z+, Qi ∈ N ∀i (5)

Equation (3) stipulates that for high ratios of vehicle availability against demand, r approaches r0.
Where very low availability levels are observed, the value of r approaches r0 + α

γ
. It is assumed that

firms do not adjust their value of Qi at each request. Vehicle availabilities in our model are influenced by
traveller origins and vehicle proximities. As such, following from Bertrand competition [2], firms can only
control bid values through fi.

In turn, travellers in our model evaluate the utility of each company bid using a nested logit model
with a degree of stochasticity to account for heterogeneity in traveller preferences. Customer utilities for
each modal options are calculated using (6) for TNC firms UTi and (7) for public transport UP :

UTi = VTi + εTi = αi − β1 wi − β2 tT − β3 pi × tT + εTi ∀i (6)

UP = VP + εP = −β1 wP − β2 tP − β3 pP + εP (7)

where pP and wP are the price and waiting times for trips using public transport, wi is the waiting
time for firm i, tP and tT are the in-vehicle travel times via public transport and TNC respectively. The
parameter αi is used to represent the inherent preferences for the TNCs due to unobserved factors such
as comfort, brand image and trust. In turn, β1, β2 and β3 are random variables representing the marginal
disutility of waiting time, travel time and travel cost, and are assumed to vary across the client population
following a normal distribution with standard errors σβ1 , σβ2 , σβ3 .

The stochastic error terms εTi and εP are randomly distributed variables following a type 1 extreme
value distribution, which is the assumption underlying the nested logit model structure. The latter assumes
a heightened correlation between the stochastic error terms for the TNCs (i.e. εTi) thus allowing for a
greater elasticity between the TNC alternatives. The values of pP , wP , wi, tP and tT vary between clients
and depend on network characteristics and vehicle distributions across the network at the time of the
request.

For the nested logit model choice probabilities are computed as follows for the high level choice of TNC
T or public transport P [1]:

P (b) =
eµ Vb

eµ VT + eµVP
∀ b = {T, P} (8)

Where µ is the scale of the stochastic error terms, assumed to be 1 between the high-level options
(TNCs versus public transport). The probability of choosing one of the TNC firms is given by:

P (Ti) = P (Ti|T )P (T ) ∀ i (9)

P (T ) =
eµ VT

eµ VT + eµVP
(10)

VT = IVT is the inclusive value of the TNC nest and is calculated using equation (11):
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IVT =
1

µT
ln

[∑
i

eµT×VTi

]
(11)

Where µT is the scale of the error terms for the TNC options, which captures the heightened correlation
between the different TNC choices as shown in equation (12):

corr = 1−
(
µ

µT

)2

(12)

The value of P (Ti|T ) is calculated using equation (13):

P (Ti|T ) =
eµT VTi∑n
j=1 e

µT VTj
(13)

For each trip request, the firms evaluate the probability of winning the bid based on the estimated
traveller utilities for each option. Estimates are required as firms are not privy to the real value of
client-specific parameters αi, β1, β2 and β3, nor the real values of their competitors wi. To estimate the
traveller utilities, each firm i uses random variables from the distributions of the parameters calibrated
from observed behaviour, denoted as α̂i, β̂1, β̂2, β̂3, σ̂β1 , σ̂β2 , σ̂β3 and µ̂TNC . Firm i also uses an estimate w̄j,i
for the waiting time of firm j, weighted by firms i waiting time and their ratio of vehicle availabilities as
shown in equation (14):

w̄j,i = wi ×
Qi

Qj

∀ i, j (14)

Hence the estimate by firm i of the utility V̄j,i of choosing firm j to the customer in question is given
by equations (15), (16) and (17):

V̄j,i = α̂i − β̂1 w̄j,i − β̂2 tT − β̂3 p̄j,i × tT ∀ i, j (15)

p̄j,i = f̄j,i + r ∀ i, j (16)

f̄j,i ∈ R+ ∀ i, j (17)

Similarly, the estimate by firm i of the utility V̄i of choosing firm i to the customer and the estimate
of the utility V̄P of choosing public transport to the same customer is given by equations (18) and (19)
respectively:

V̄i = α̂i − β̂1 wi − β̂2 tT − β̂3pi × tT ∀ i (18)

V̄P = −β̂1 wP − β̂2 tP − β̂3pP (19)

Firms choose the price of their bids to maximise their expected profit. Since the utility values used in
the probability calculations are estimates, so is the expected profit. For simplicity, we assume a scenario
where only two TNCs operate. Hence, the expected profits E(P̄ rTi) and E(P̄ rTj,i), given the marginal cost
ci per time of travel for each firm are:

E(P̄ rTi) = P̄ (Ti | f̄j,i)× ((fi + r)− ci) ∀ i (20)

E(P̄ rTj,i) = P̄ (Tj,i | fi)× ((f̄j,i + r)− cj) ∀ i, j (21)

If a pair of values f ∗
i and f̄ ∗

j,i exists for which both E(P̄ rTi) and E(P̄ rTj,i) are maximised, this constitutes
a Nash Equilibrium. Hence, the algebraical solution for the Nash Equilibria, if they exist, could be found
by solving the system of non-linear equations for fi and f̄j,i as defined in equations (22) and (23). Fixed
costs are not considered in equations (20) and (21) since they do not influence the choice of fi which is
defined by (22) and (23):

∂(E(P̄ rTi))

∂fi
= g(fi, f̄j,i) = 0 ∀ i (22)
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∂(E(P̄ rTj,i))

∂f̄j,i
= h(fi, f̄j,i) = 0 ∀ i, j (23)

3 Expected Results

The Nash Equilibrium in the proposed model is expected to be different than the Bertrand model [2], where
equilibrium price is the marginal cost. This is due to allowing for variation in the inherent preference and
waiting times between TNCs. This variation gives the competitive advantage to the firm with the highest
sum of the inherent preference and waiting time terms in equations (15) and (18) to set the equilibrium
value of extra variable tariff above 0. We test the model for the presence of Nash Equilibria, solving the
system of non-linear equations (22) and (23). Simulation is used to evaluate the impact of this model in
realistic network scenarios.
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