
Learning nuisances to track pedestrians in autonomous vehicles

Adaimi, George
VITA, EPFL

Alahi, Alexandre
VITA, EPFL

Abstract. Autonomous vehicles rely on an accurate per-
ception module. One of the fundamental challenges is to
efficiently track pedestrians surrounding a vehicle to antic-
ipate risky situations. Over the past decades, researchers
have formulated the tracking problem as a data association
one where they proposed various representations aiming for
invariance to nuisances such as viewpoint changes, body
deformation, object occlusion, and illumination changes.
However, these methods still suffer to address abrupt
changes since they do not explicitly model the nature of
the nuisances.

In this work, we propose to train a classifier that rec-
ognizes these nuisances, more specifically rotational body
deformation of pedestrians. We aim to detect this deforma-
tion and use it to improve the tracking process.

I. INTRODUCTION

Tracking, in self-driving cars, is an important feature used to
deduce the speed and direction of a pedestrian or car. It helps
in accurately forecasting a detected object’s future trajectory.
While there is an increasing trend towards self-driving cars,
previous research in the field of tracking is still limited in its
capacity. Most of the previous work on tracking algorithms try
to be invariant to the nuisances that effect its performance such
as partial occlusion, lighting change, body deformation, and
viewing angle change. Being able to identify and account for
such problems during tracking might make the algorithm more
robust to different real-life situations.

In order to improve such tracking, we first need to identify the
type of deformation that occurs and deal with it accordingly. We
start by first dealing with a specific type of deformation caused
by the rotation of the person being tracked.

II. RELATED WORK

There has been some work done in detecting the different
changes that occur in real-world scenarios. Cheng et al [1]
proposed a background model re-initialization (BMRI) method
based on luminance change. This method proved useful in
detecting a sudden luminance change by first finding whether
the intensity value of a frame differs by a specific threshold
from the previous frame. Then, a luminance histogram is used
from the output of the first step to detect entropy change. Liu et
al [2] implemented a rotation-invariant object detector. This is
done by using a new feature extractor called Sector-ring HOG
(SRHOG) and a classifier called Boosted Random Ferns(BRF).
By calculating the gradient scale and orientation at every pixel
and grouping into cells to obtain the SRHOG descriptor, features
that are invariant to rotation are extracted and classified using
BRF. BRF is used over other classifiers due its robustness to
illumination.

To the best of our knowledge, not much work has been done
for detecting rotation changes that can enhance a robot’s tracking
algorithm. In this paper, we propose an approach to this problem
that is based on the GOTURN architecture[3]. For our purpose,
we used the GOTURN architecture and trained it to detect
rotation changes.

Figure 1: An overview of the implementation

III. DATASET COLLECTION

As can be observed in Figure 1, the final implementation
should be able to take in two frames, detect whether it is the
same person, and then be able to detect the amount of rotation
deformation between these two frames. To achieve this, a
labeled dataset with images labeled by their rotation angle is
needed. Since no labeled dataset was found, we had to collect
our own data and perform some preprocessing steps to create a
complete labeled dataset.

Stage 1. Collecting images. Our task requires images of
people rotating in front of the camera. Two datasets were found:
IAS-Lab RGBD-ID Dataset[4], [5], BIWI RGBD-ID data set[4],
[6]. These datasets are RGB-D images of people moving and
rotating in a room used for long-term people re-identification.

Both datasets are labeled according to people ID which
provides us with one of the labels required by our
implementation. The skeletal information of each person
in an image is also provided which is used in the next stage to
divide the data according to rotation angle.

Stage 2. Filter images by rotation angle. Since the images
extracted from the two mentioned datasets are only divided by
ID and not by angle, we had to find an automated way to label
them by rotation angle. To achieve this, information about the
position of the left and right shoulder and the quaternion of the
segment joining them to analyze their rotation.

This is first done by setting, for every label, a ground-truth
quaternion which is compared to the quaternion of each person
in an image. For every image, we calculate the angle difference
between its quaternion and that of each label. To be considered
part of this label, the difference should not exceed a specific
threshold.

This method proved to be somewhat challenging as several
problems were encountered. The skeletal information provided
does not take into account whether the person is facing the
camera or not. This makes it difficult for the algorithm to
separate supplementary angles such as 0o and 180o. This can
be seen in Figure 2.

To overcome this problem, we used a simple face detector
implemented by OpenCV[7] which detects the front and side
of the face. Thus, when a match for a specific class is found,
the image is then passed to the face detector to determine if the
predicted class is correct and fix accordingly.

Figure 2: Same alignment of right and left shoulder for two
different rotations

Stage 3. Pair and label data. Our use of the dataset requires
the data to be paired together before inputing them to our
model. There are many ways of pairing the data. The dataset
is divided into two sub-datasets, positive and negative, each of
which include a different combination of the pairs. The statistics
of the different sub-datasets can be found in Table I. An example
of each combination is shown in Figure 3 and Figure 4.

Dataset Number of Pairs
Positive Dataset 482,938

Same IDs + Different/Same angles 482,938
Negative Dataset 266,709

Different IDs + Same angles 33,577
Different IDs + Different Angles 233,132

Table I: The statistics of the positive and negative dataset

(a) Same ID + Same Angle

(b) Same ID + Different Angle

Figure 3: Example from positive dataset

(a) Different ID + Same Angle

(b) Different ID + Different Angle

Figure 4: Example from negative dataset

IV. NETWORK ARCHITECTURE AND IMPLEMENTATION

Our model requires an architecture that uses two images as
inputs to compare them together and then outputs a specific
label. Convolution neural networks have proven to be the best
in analyzing images. Thus, for our initial prototype, we used
the same architecture employed by the GOTURN algorithm [3],
which in turn is based on the CaffeNet architecture [8], [9], but
with a different loss function and final layer.

A. Architecture

As discussed before, the architecture shown in Figure 5
is based on the architecture used in the GOTURN algorithm.
Two images are inputed into the network that consists of 5
convolutional layers. The main role of these layers is to extract
higher level representations of the image. These representations
will provide the important features that are needed to compare
the two images. The output of both convolutional layers are
concatenated and inputted into a series of three fully connected
layers. Their job is to learn the weights that best compare the
two images to detect the rotation angle and ID.

Figure 5: Architecture of CNN used

B. Implementation

Our goal is to implement a model that is able to re-identify
a person and regress the angle of rotation of a pedestrian being
tracked by a machine.

The architecture is implemented using Tensorflow[10]. Two
images are read from the respective dataset and then passed to
a pedestrian detector implemented by OpenCV [7]. The detector
finds and crops the person in both images which are then
inputted to the neural network to be trained. During training,
the loss function for detecting rotation computes the softmax

cross entropy between the real label and the predicted label. It
follows the equation below:

AverageLoss =
1

|B|
∑

Xi∈B

Li

where



Xi ∈ Sample Observation

Li = − ln (σ(Xi))

B ⊂ Training Data

σ(Xj) =
eXjW∑
i e

XiW
(Softmax Equation)

The model aims to minimize this loss during training.

V. FUTURE RESULTS AND CONCLUSION

In this work, we have addressed the problem of detecting
rotational deformation encountered in real-life situations, which
has not been addressed before. As a first step, we created our own
dataset of images of pedestrians and trained a neural network
to detect the presence of a rotation in a pair of images. We
will then show whether using this information will improve the
tracking process. As preliminary testing, results from a neural
network that is able to detect rotation angle and another that
only detects whether its the same person will be compared.
Detecting a rotation angle indicates that the same person was
detected. The results will show us the effect of capturing rotation
on the performance of tracking a person. We will show results
of various loss functions to solve the detections of the different
nuisances in the aim of better identifying the person.

In future work, we plan to test our implementation and study
its performance in real-life scenario by integrating the algorithm
into our lab’s robot, Loomo. In addition, there are many other
types of nuisances such as viewpoint changes, body deformation
, object occlusion, and illumination changes that still need to be
considered. Thus, our final goal is to extend our architecture
to recognize the different nuisances and improve the tracking
process.

REFERENCES

[1] F.-C. Cheng, B.-H. Chen, and S.-C. Huang, “A background model
re-initialization method based on sudden luminance change detec-
tion,” vol. 38, 11 2014.

[2] B. Liu, H. Wu, W. Su, W. Zhang, and J. Sun, “Rotation-invariant
object detection using sector-ring hog and boosted random ferns,”
The Visual Computer, May 2017.

[3] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100
FPS with deep regression networks,” CoRR, vol. abs/1604.01802,
2016.

[4] M. Munaro, A. Basso, A. Fossati, L. V. Gool, and E. Menegatti,
“3D Reconstruction of Freely Moving Persons for Re-
Identification with a Depth Sensor,” in IEEE International Con-
ference on Robotics and Automation (ICRA2014), 2014.

[5] M. Munaro, S. Ghidoni, D. T. Dizmen, and E. Menegatti, “A
Feature-based Approach to People Re-Identification using Skele-
ton Keypoints,” in IEEE International Conference on Robotics and
Automation (ICRA2014), 2014.

[6] M. Munaro, A. Fossati, A. Basso, E. Menegatti, and L. Van Gool,
One-Shot Person Re-identification with a Consumer Depth Cam-
era, pp. 161–181. London: Springer London, 2014.

[7] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Soft-
ware Tools, 2000.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, MM ’14, (New York,
NY, USA), pp. 675–678, ACM, 2014.

[9] J. Kuen, K. Lim, and C. Lee, “Self-taught learning of a deep
invariant representation for visual tracking via temporal slowness
principle,” CoRR, vol. abs/1604.04144, 2016.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. Software available from tensorflow.org.

	Introduction
	Related Work
	Dataset Collection
	Network Architecture and Implementation
	Architecture
	Implementation

	Future Results and Conclusion
	References

