
Optimization of Discrete Choice Models using first-order
methods

Gael Lederrey, Virginie Lurkin, and Michel Bierlaire

Transport and Mobility Laboratory
École Polytechnique Fédérale de Lausanne,

Station 18, CH-1015 Lausanne
gael.lederrey@epfl.ch

1 Introduction

Discrete Choice Models (DCM) are powerful operational tools designed to capture in detail the under-
lying behavioral mechanisms at the foundation of demand. These disaggregate models have received a
great amount of attention in the last years. However, very little work has been done on estimating those
models, that is computing the maximum log-likelihood. Many of the recent advances in Machine Learn-
ing, and especially since the emergence of Neural Networks, come from incredibly powerful methods for
function optimization. Indeed, due to the power of computers and new optimization techniques, we can
train Deep Neural Networks on huge datasets efficiently by employing good practice as given by Livni
et al. (2014).

With the exponential increase of data availability nowadays, see Wu et al. (2014), the discrete choice
modelers have now access to big datasets and it becomes crucial for them to learns how to take advantage
of Machine Learning researchers. The majority of DCM software used in practice relies on second-order
methods such as the BFGS algorithm. Whilst these methods are powerful, the computation of the Hes-
sian can be prohibitely complex, particularly for large datasets. First-order methods work particularly
well with Neural Networks (see Bottou et al. (2016) for an overview of optimization methods for Machine
Learning).

In this work, we apply first-order optimization methods to a Multinomial Logit Model. The goal is to
understand if it is possible to optimize these convex models without the curvature information from
the Hessian. This is the first step towards designing more efficient optimization algorithms for Discrete
Choice models.

2 Methodology

We use the Swissmetro dataset (Bierlaire et al., 2001) and build a multinomial logit model denoted by
M:

VCar = ASCCar + βTT,CarTTCar + βC,CarCCar + βSenior1Senior

VSM = ASCSM + βTT,SMTTSM + βC,SMCSM + βHEHESM + βSenior1Senior (1)

VTrain = ASCTrain + βTT,TrainTTTrain + βC,TrainCTrain + βHEHETrain

where 1Senior is a boolean variable equal to one if the age of the respondent is over 65 years olds, 0
otherwise, C denotes the cost, TT the travel time, and HE the headway for the train and Swissmetro.
On this model, we remove all observations with unknown choice, unkown age and non-positive travel
time. This gives a total of 9,036 observations.

This model is first estimated with Biogeme (Bierlaire, 2003) to obtain the optimal parameter values and
verify that all parameters are significant. The final log-likelihood is −7145.721 and the parameters are
given in Table 1.

All parameters are shown to be significant. We replicate the model in Python using the function minimize

with the method BFGS from the package scipy.optimize. We obtain similar optimal parameter values
to the Biogeme model. These results form our benchmark to test against other optimization methods.

1



Name Value Std err t-test p-value

ASCCar 0 - - -

ASCSM 7.86 · 10−1 6.93 · 10−2 11.35 0.00

ASCTrain 9.83 · 10−1 1.31 · 10−1 7.48 0.00

βTT,Car −1.05 · 10−2 7.89 · 10−4 -8.32 0.00

βTT,SM −1.44 · 10−2 6.36 · 10−4 -21.29 0.00

βTT,Train −1.80 · 10−2 8.65 · 10−4 -20.78 0.00

βC,Car −6.56 · 10−3 7.89 · 10−4 -8.32 0.00

βC,SM −8.00 · 10−3 3.76 · 10−4 -21.29 0.00

βC,Train −1.46 · 10−2 9.65 · 10−4 -15.09 0.00

βSenior -1.06 1.16 · 10−1 -9.11 0.00

βHE −6.88 · 10−3 1.03 · 10−3 -6.69 0.00
Table 1. Parameters of the optimized model M by Biogeme.

3 Preliminary Results

We start by opzimizing modelM with four different algorithms: Gradient Descent, mini-batch Stochas-
tic Gradient Descent (SGD), Adagrad, and SAGA. Gradient Descent is the base algorithm using all
observations to perform a step (see Ruder (2016)). The mini-batch SGD uses a batch of observations to
compute the gradient and perform a step. We use a batch size of 100 observations. Adagrad is a more
advanced algorithm deriving from the mini-batch SGD, see Duchi et al. (2011). This algorithm has been
widely used for training Neural Networks. The main contribution of this algorithm is the adaptation of
the learning rate to the parameters. The fourth algorithm, SAGA, makes use of variance-reduction tech-
niques and has been shown to perform particularly well on finite sum structure (see Defazio et al. (2014)).

Starting from a zero-vector, we run the four algorithms for 1,000 steps to optimize the log-likelihood of
M. The results are given in Fig. 1. All four algorithms perform well in the early steps. The algorithms all
plateau in the later steps and do not converge to the optimal value. It is especially visible for the Gradient
Descent and the mini-batch SGD algorithms. Adagrad and SAGA are still improving marginally after
1,000 steps. Adagrad performs better than the two basic algorithms due to its adaptive step size.

0 200 400 600 800 1000
Steps

8000

7900

7800

7700

7600

7500

7400

7300

7200

7100

Lo
g­

lik
el

ih
oo

d

Optimal value
Gradient Descent
mini­batch SGD
Adagrad
SAGA

Fig. 1. Optimization of the model M for different first-order methods. The line corresponds to the average over
100 runs and the transparent part corresponds to the 95% confidence interval.

Table 2 shows the values of the parameters for the steps 250, 500, 750, and 1000 for the Gradient De-
scent algorithm compared to the optimized values. As we can see, the parameters ASCSM, ASCTrain, and

2



βSenior are still far away from their optimal value with Gradient Descent. This is due to the difference
in orders of magnitude for the optimal parameter values as shown in Table 1. This presents a maximum
value constraint on the step-size to ensure that the algorithm does not diverge for the parameters with
small optimal value. This constraint limits the gradient for the optimization and causes the algorithm
to plateau. This issue can be addressed by normalizing the values fo the data such that the optimal
parameter values are all in the same order of magnitude.

steps

Parameters 250 500 750 1000 optimized %Error

ASCCar – – – – 0 –

ASCSM 4.29 · 10−4 7.90 · 10−4 1.15 · 10−3 1.51 · 10−3 7.86 · 10−1 99.81%

ASCTrain −9.75 · 10−6 6.36 · 10−5 1.37 · 10−4 2.10 · 10−4 9.83 · 10−1 99.98%

βTT,Car −1.21 · 10−2 −1.21 · 10−2 −1.21 · 10−2 −1.21 · 10−2 −1.05 · 10−2 15.64%

βTT,SM −1.23 · 10−2 −1.26 · 10−2 −1.26 · 10−2 −1.26 · 10−2 −1.44 · 10−2 12.92%

βTT,Train −1.59 · 10−2 −1.60 · 10−2 −1.60 · 10−2 −1.60 · 10−2 −1.80 · 10−2 11.02%

βC,Car −7.85 · 10−3 −8.02 · 10−3 −8.03 · 10−3 −8.03 · 10−3 −6.56 · 10−3 22.40%

βC,SM −7.35 · 10−3 −7.45 · 10−3 −7.46 · 10−3 −7.46 · 10−3 −8.00 · 10−3 6.79%

βC,Train −1.26 · 10−2 −1.40 · 10−2 −1.40 · 10−2 −1.40 · 10−2 −1.46 · 10−2 3.75%

βSenior −1.61 · 10−4 −3.26 · 10−4 −4.92 · 10−4 −6.57 · 10−4 -1.06 99.94%

βHE −2.25 · 10−3 −2.01 · 10−3 −2.00 · 10−3 −2.00 · 10−3 −6.88 · 10−3 70.87%

Log-likelihood -7253.83 -7253.55 -7253.49 -7253.42 -7145.72 1.51%
Table 2. Values of the parameters for different steps of the Gradient Descent algorithm compared to the optimized
value found by Biogeme. The last column shows the relative percentage error between the iteration 1000 and the
optimized value. Likelihood for zero-vector: -9927.06.

We divide the values of the data for Cost, Time, and Headway by 100 so that all associated β’s will be
multiplied by 100, therefore normalizing the order of magnitude. The results of the optimization of the
normalized model are given in Fig. 2.

0 200 400 600 800 1000
Steps

8000

7900

7800

7700

7600

7500

7400

7300

7200

7100

Lo
g­

lik
el

ih
oo

d

Optimal value
Gradient Descent
mini­batch SGD
Adagrad
SAGA

Fig. 2. Optimization of the normalized model M for different first-order methods. The line corresponds to the
average over 100 runs and the transparent part corresponds to the 95% confidence interval.

3



The four algorithms still encounter a plateau, but they obtain a solution much closer to the optimal
solution within 1,000 iterations. However, none of these algorithms converge fully to the optimal solution,
as the gradient never decreases enough to reach termination. We show the parameters’ values for different
steps in Table 3.

steps

Parameters 250 500 750 1000 optimized %Error

ASCCar – – – – 0 –

ASCSM 6.39 · 10−1 7.34 · 10−1 7.68 · 10−1 7.80 · 10−1 7.86 · 10−1 0.85%

ASCTrain 4.69 · 10−1 8.02 · 10−1 9.17 · 10−1 9.59 · 10−1 9.83 · 10−1 2.41%

βTT,Car -1.05 -1.05 -1.05 -1.05 −1.05 0.04%

βTT,SM -1.38 -1.43 -1.44 -1.44 −1.44 0.15%

βTT,Train -1.58 -1.72 -1.77 -1.79 −1.80 0.53%

βC,Car −6.51 · 10−1 −6.59 · 10−1 −6.57 · 10−1 −6.56 · 10−1 −6.56 · 10−1 0.08%

βC,SM −7.77 · 10−1 −7.95 · 10−1 −7.99 · 10−1 −8.00 · 10−1 −8.00 · 10−1 0.07%

βC,Train -1.40 -1.45 -1.46 -1.46 −1.46 0.00%

βSenior −8.94 · 10−1 -1.04 -1.06 -1.06 -1.06 0.88%

βHE −4.41− 1.05 · 10−1 −5.94 · 10−1 −6.54 · 10−1 −6.76 · 10−1 −6.88 · 10−1 1.76%

Log-likelihood -7155.32 -7146.76 -7145.85 -7145.74 -7145.72 0.00%
Table 3. Values of the parameters for different steps of the Gradient Descent algorithm compared to the optimized
value found by Biogeme on the normalized version of M. The last column shows the relative percentage error
between the iteration 1000 and the optimized value. Likelihood for zero-vector: -9927.06.

As we can see in Table 3, whilst Gradient Descent approaches the optimal solution closely, it is not
terminated within 1,000 iterations. To improve the convergence rate, the next step is to use a method
to find optimal step size. We implemented this using a line search. The Adagrad algorithm cannot be
used with a line search, so is not investigated here. Fig. 3 shows the results with the three remaining
algorithms.

0 200 400 600 800 1000
Steps

8000

7900

7800

7700

7600

7500

7400

7300

7200

7100

Lo
g­

lik
el

ih
oo

d

Optimal value
GD (Line search)
mini­batch SGD (Line Search)
SAGA (Line search)

Fig. 3. Optimization of the normalized model M for different first-order methods using Line Search method for
the step-size. The line corresponds to the average over 100 runs and the transparent part corresponds to the 95%
confidence interval.

Another advantage of using Line Search with Stochastic algorithms is that it dampens the oscillations
within optimization. Both SAGA and mini-batch SGD have much smoother convergence, as seen by

4



comparing Fig. 3 with Fig. 2. We also see that the algorithms converge faster in the initial steps. How-
ever, all three algorithms are still not able to reach termination within 1,000 steps. We are currently
investigating the possible reasons behind this behavior.

We are also currently implementing and testing second-order methods. However, in classical second-order
methods, the Hessian is computed on all observations, which is impracticable. Therefore, we have to use
methods such as Hessian-free optimization, as done by Byrd et al. (2011) and Bordes et al. (2010),
on our model before testing these methods on non-convex models. The main idea behind Hessian-free
optimization is to use insights from Newton’s method but to come up with a better way to minimize the
quadratic function we get.

Bibliography

Bierlaire, M. (2003). BIOGEME: a free package for the estimation of discrete choice models. Swiss
Transport Research Conference 2003.

Bierlaire, M., Axhausen, K., and Abay, G. (2001). The acceptance of modal innovation: The case of
Swissmetro. Swiss Transport Research Conference 2001.

Bordes, A., Bottou, L., Gallinari, P., Chang, J., and Smith, S. A. (2010). Erratum: SGDQN is Less
Careful than Expected. Journal of Machine Learning Research, 11(Aug):2229–2240.

Bottou, L., Curtis, F. E., and Nocedal, J. (2016). Optimization Methods for Large-Scale Machine
Learning. arXiv:1606.04838 [cs, math, stat]. arXiv: 1606.04838.

Byrd, R., Chin, G., Neveitt, W., and Nocedal, J. (2011). On the Use of Stochastic Hessian Information
in Optimization Methods for Machine Learning. SIAM Journal on Optimization, 21(3):977–995.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objectives. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems
27, pages 1646–1654. Curran Associates, Inc.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Livni, R., Shalev-Shwartz, S., and Shamir, O. (2014). On the Computational Efficiency of Training
Neural Networks. arXiv:1410.1141 [cs, stat]. arXiv: 1410.1141.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv:1609.04747 [cs]. arXiv:
1609.04747.

Wu, X., Zhu, X., Wu, G. Q., and Ding, W. (2014). Data mining with big data. IEEE Transactions on
Knowledge and Data Engineering, 26(1):97–107.

5


