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1 Introduction

Along a public transport line operators serve multiple spatio-temporally differentiated mar-
kets with the same second-best capacity. Horcher and Graham (2018) show in the simplest
back-haul setting that the asymmetry in demand between jointly served markets may have
crucial impact on (1) the optimal capacity, (2) the equilibrium occupancy rate of vehicles
and thus the crowding experience of passengers, (3) optimal pricing decisions, and (4) the
financial and economic performance of public transport provision.

In this research the authors extend the analysis of the back-haul problem to a more
realistic urban public transport setting: a transit line along which capacity is still indivisible
due to operational constraints, but more than two origin-destination pairs have to be served.
We investigate what may be a suitable measure of demand imbalances in this setting that
could replace the share of main haul demand in total ridership in the back-haul problem
(Horcher and Graham, 2018). We show that what matters in a network is not only the spread
of demand between line section matters, but also the spread of operational costs between
them. For example, it may be relatively more expensive to handle excess demand on long line
section. To characterise the joint distribution of demand and operational costs, we propose the
Gini coefficient of demand imbalances, a statistical index frequently used in macroeconomics
as a measure of income inequality.
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2 The Gini index in public transport context

The Gini coefficient measures statistical dispersion between two frequency distributions. In
a public transport context we can adopt this concept by plotting the cumulative share of
operational costs on line sections against the cumulative share of demand, after sorting both
variables in increasing order. The resulting Lorenz curve is the diagonal of the graph in case
of perfect equality, while if all demand is concentrated on a negligably short line section, then
the Lorenz curve moves along the two sides of the graph (see Figure 1). The Gini index is the
share of the area between the actual Lorenz curve and the one belonging to perfect equality
(area A), and the area between the two extrema (area A+B). Thus the Gini index ranges
between zero and unity.

Cumulative share of demand
(increasing order)

Cumulative share of operational costs
(increasing order)

Figure 1: The interpretation of the Gini coefficient in a public transport context

In this research we explore the Gini indices of real world metro demand patterns derived
from smart card data. In the main body of the analysis we investigate in a simulation exper-
iment whether the Gini index can serve as a proxy for the numerical optimum of capacity
provision and pricing. In other words, we pose the following research question: controlling for
scale effects, what is the impact of demand imbalanced, measured by the Gini coefficient, on
supply decisions, user costs and eventually on social welfare?

3 Quantitative analysis

Our research approach is partly based on empirical demand patterns recovered from smart
card data. Section 3.1 presents preliminary insights into demand imbalances along four metro
lines. As data collection for more metro demand patterns is currently ongoing, and we can
hardly acquire line-level operational costs due to joint fixed costs between lines, the rest of
this analysis is now complemented with synthetic demand patterns in Section 3.2.



3.1 Demand imbalances in reality

In order to get an empirical insight into what demand patterns transport operators face
in reality, let us look at data gathered in a large Asian metro network. Let us focus on
separate metro lines and time periods when capacity (i.e. the length and frequency of trains)
is kept constant. In the metro network under investigation this is the case between 7.30 and
10.30, later on referred to as morning peak, and between 11.00 and 16.00 in the afternoon.
Figure 2 shows frequency distributions of ridership in eight operational regimes, where each
observation corresponds to the passenger throughput of an interstation section in 15-minute

intervals.
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Figure 2: Peak and off-peak demand patterns of four urban metro lines, derived from smart card
data. Each observation corresponds to the passenger throughput of an interstation section in 15-minute
intervals.

First of all, note that the histograms are surprisingly diverse; none of the standard prob-
ability distirbution functions can be identified as the universial distribution of metro demand
patterns. Morning peak distributions show some similarity in case of Lines 1, 2 and 4. These
may be associated with a gamma or log-normal distribution, as there is a decreasing pattern
towards high demand levels. Line 2 is an outlier not only in terms of the shape of the his-
togram, but also in the sense that mean ridership (u) is higher and the standardised measure
of spread (coefficient of variation, CV) is lower than for the three other lines. The distribution
of off-peak demand shows even more randomness. Lines 1 and 4 have a disproportionately



high number of line sections where demand is under 1000 passengers per 15 minutes, Line 3
has almost a homogeneous distribution, while in case of Line 2 the demand pattern is heavily
skewed towards higher ridership levels.

The lack of uniformity in demand distributions suggests that the standard measures of
spread may not be appropriate for characterising demand imbalances. Also, travel times on
line sections range between less than 2 minutes to more than 5 minutes, which implies that the
share of inter-station markets in operational costs is not similar either. This is the main reason
why we decided to turn towards a more compact measure of the joint distribution of demand
and operational costs. Among the selected metro demand patterns the Gini coefficient ranges
between 0.18 and 0.41.

3.2 Numerical simulation

In order to investigate the relationship between supply variables, passenger well-being and
the Gini index, we generate a random sample of demand patterns for the simple network
depicted in Figure 3. Controlling for scale effects is a crucial feature of the analysis, as
otherwise it would be difficult to disentangle the consequences of scale economies and demand
asymmetries. In order to avoid this threat we generate the demand patterns such that the
total number of passengers as well as passenger miles are kept constant at 4000 passengers
and 2500 passenger hours, respectively. This ensures that scale effect cannot arise in either
waiting time or in-vehicle travel time costs. The Gini indices vary between 0.1 and 0.5 in the
randomly generated sample, which is almost the same range as what we found for real metro
lines.
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Figure 3: Network layout for simulation experiment

The randomly generated demand patterns are then numerically optimised with respect
to frequency (f) and vehicle size (s), according to a social cost minimisation objective.

Inil’l TC — Cop + Cuse'r‘7 (1)

)

where operational costs are a function of cycle time (¢.) and three parameters,
Cop=tef-(a+bs), (2)

and total user costs are

Cuser = Z Qi [aw 0.5f 1+ Z Sijtj an (1 + SOQj(fS)_I)} ~ (3)
i J

In the user cost expression 7 is the index of OD pairs, and j € L represents the links in the
network. @); is the inelastic demand on OD pair 4, and g; is ridership on link j, such that

4



q; = >_;0;jQi. We consider two user cost components: the cost of waiting and in-vehicle
travelling, where the latter is applied with a crowding dependent multiplier. In the formula
@y and a, are the value of waiting and in-vehicle time, respectively, and ¢ is the parameter
of the linear crowding multiplier. Note that g;( fs)~! is the occupancy rate on link j and 0ij
is a dummy set to unity if link j is used by OD ¢ passengers.
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Figure 4: Simulation results — Optimal capacity and the resulting operational costs and social welfare

We calibrated the model with parameters borrowed from earlier capacity optimisation
studies, i.e. Rietveld et al. (2002), Jara-Diaz and Gschwender (2003) and Rietveld and van
Woudenberg (2007), and the crowding multiplier comes from Hoércher et al. (2017).

The main outcome of this preliminary analysis is that ceteris paribus the Gini coefficient
is a surprisingly good predictor of the optimal capacity (frequency as well as vehicle size) and
the resulting operational and aggregate social costs, as Figure 4 depicts. The shape of the
relationship between the Gini index and supply variables is very similar to what we found



in the back-haul problem (Hoércher and Graham, 2018). As the concentration of demand
increases, frequency is gradually replaced with higher vehicle size, because the disutility of
crowding becomes more important than to waiting time costs. The optimal cost of operations
increases with the magnitude of demand imbalances, just like the aggregate cost for society.
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Figure 5: Simulation results — Average and maximum crowding density under optimal capacity
provision, in function of the Gini index

More insights can be gained by plotting crowding related simulation variables against the
Gini index. Figure 5 shows that the new measure of line-level demand imbalances explains
very well the increase in crowding disutility experienced by the average passenger (weighted
by the duration of their trips). As intuition suggests, the greater the asymmetry in demand
between markets served by the same capacity, the higher the average crowding disutility, even
at constant passenger mile performance.

Maximum crowding density values, however, have a much wider spread around the best
fitting nonlinear curve, using the Gini index as predictor variable. In other words, above
around G = 0.3, the possibility of extreme crowding conditions cannot be explained by this
measure of demand imbalances.

4 Future research and relevance

The analysis introduced above will be extended in several ways. First of all we collect a larger
set of metro smart card data, in order to validate the relationship between supply variables
and the Gini index, simulated in Figure 4, with real observations on individual line level.



In addition, we intend to verify the simulation results with analytical derivations based on
functional representations of the Gini coefficent (Dorfman, 1979). Although our preliminary
experiments suggest that the Gini coefficient is a suitable measure of demand imbalances,
future research may consider more advanced inequality measures to be adopted for travel
demand applications (Atkinson, 1983).

Future plans include the investigation of the inequality measure under elastic demand on
each OD pair of the network, in which case ridership levels as well as the Gini index itself may
depend on supply side variables. Elastic demand would allow for an investigation of pricing
strategies in the presence of network-level demand imbalances. The core research goal in this
case will be to identify the impact of the Gini index on the efficiency of differentiated vs. flat
fare policies.

Why is the analysis of demand imbalances relevant for research and policy? Transport
services make connections between geographically separated areas of a heterogenous urban
space, and are therefore affected by the spatial and temporal concentration of economic ac-
tivity. Said differently, travel patterns are strongly linked to city structure, which is almost
exogenous for public transport operators. Therefore studying demand asymmetries is essen-
tially about how urban spatial structure affects the key operational and economic features of
public transport provision. Policies that affect the spatial and temporal pattern of activities
in the urban economy will influence the effectiveness of public transport provision as well,
and therefore optimal public transport interventions should reflect the spatial environment
of operations.
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